Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric M. Rouiller is active.

Publication


Featured researches published by Eric M. Rouiller.


Experimental Brain Research | 1994

Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys

Eric M. Rouiller; Alexandre Babalian; O. Kazennikov; Véronique Moret; Yu Xh; M. Wiesendanger

The goal of the present neuroanatomical study in macaque monkeys was twofold: (1) to clarify whether the hand representation of the primary motor cortex (M1) has a transcallosal projection to M1 of the opposite hemisphere; (2) to compare the topography and density of transcallosal connections for the hand representations of M1 and the supplementary motor area (SMA). The hand areas of M1 and the SMA were identified by intracortical microstimulation and then injected either with retrograde tracer substances in order to label the neurons of origin in the contralateral motor cortical areas (four monkeys) or, with an anterograde tracer, to establish the regional distribution and density of terminal fields in the opposite motor cortical areas (two monkeys). The main results were: (1) The hand representation of M1 exhibited a modest homotopic callosal projection, as judged by the small number of labeled neurons within the region corresponding to the contralateral injection. A modest heterotopic callosal projection originated from the opposite supplementary, premotor, and cingulate motor areas. (2) In contrast, the SMA hand representation showed a dense callosal projection to the opposite SMA. The SMA was found to receive also dense heterotopic callosal projections from the contralateral rostral and caudal cingulate motor areas, moderate projections from the lateral premotor cortex, and sparse projections from M1. (3) After injection of an anterograde tracer (biotinylated dextran amine) in the hand representation of M1, only a few small patches of axonal label were found in the corresponding region of M1, as well as in the lateral premotor cortex; virtually no label was found in the SMA or in cingulate motor areas. Injections of the same anterograde tracer in the hand representation of the SMA, however, resulted in dense and widely distributed axonal terminal fields in the opposite SMA, premotor cortex, and cingulate motor areas, while labeled terminals were clearly less dense in M1. It is concluded that the hand representations of the SMA and M1 strongly differ with respect to the strength and distribution of callosal connectivity with the former having more powerful and widespread callosal connections with a number of motor fields of the opposite cortex than the latter. These anatomical results support the proposition of the SMA being a bilaterally organized system, possibly contributing to bimanual coordination.


Experimental Brain Research | 2002

Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways.

Judith Tanné-Gariépy; Eric M. Rouiller; Driss Boussaoud

The lateral premotor cortex plays a crucial role in visually guided limb movements. Visual information may reach this cortical region from the parietal cortex, the highest stage in the dorsal visual stream. Anatomical studies indicate that the parietal projections to the dorsal (PMd) and ventral (PMv) premotor areas arise from separate parietal regions, supporting the notion of parallel visuomotor pathways. We tested the degree of segregation of these pathways by injecting retrograde tracers into PMd and PMv in the same monkeys, under physiological control. Eleven injections were made in four animals, and the analysis of retrograde labelling revealed that parietal cells projecting to PMd and those projecting to PMv are largely segregated. The strongest projections to PMd arise from the superior parietal lobule, including the medial intraparietal area (MIP), PEc and PGm, and the parieto-occipital area. These areas were devoid of labelling following injections into PMv, which receives its major projections from the anterior intraparietal area (AIP), area PEip, the anterior portion of the inferior parietal gyrus (area 7b), and the somatosensory areas. In addition to their strong projections to PMv, areas 7b and PEip send minor projections to PMd as well. Additional projections to PMd arise from the ventral intraparietal area and the inferior parietal lobule. The present findings are direct anatomical evidence for largely segregated visuomotor pathways linking parietal cortex with PMd and PMv.


Nature Medicine | 2006

Nogo-A–specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates

Patrick Freund; Eric Schmidlin; Thierry Wannier; Jocelyne Bloch; Anis Khusro Mir; Martin E. Schwab; Eric M. Rouiller

In rodents, after spinal lesion, neutralizing the neurite growth inhibitor Nogo-A promotes axonal sprouting and functional recovery. To evaluate this treatment in primates, 12 monkeys were subjected to cervical lesion. Recovery of manual dexterity and sprouting of corticospinal axons were enhanced in monkeys treated with Nogo-A–specific antibody as compared to monkeys treated with control antibody. NOTE: In the version of this article initially published, the cut corticospinal tract (CST) stumps rostral to the lesion site in Figure 2d and Supplementary Fig. 3a online were meant to be represented schematically, a fact not explained in the figure legend. These representations should therefore have been replaced by full camera lucida reconstructions of these rostral cut CST stumps for the corresponding animals, requiring the consideration of additional sections of the spinal cord located more laterally than those drawn here for the reconstruction of the CST axonal arbors caudal to the lesion (sections for which the contours are represented here). The figure has been corrected in the HTML and the PDF versions of the article.


Nature Medicine | 2007

Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans

Grégoire Courtine; Mary Bartlett Bunge; James W. Fawcett; Robert G. Grossman; Jon H. Kaas; Roger N. Lemon; Irin C. Maier; John H. Martin; Randolph J. Nudo; Almudena Ramón-Cueto; Eric M. Rouiller; Lisa Schnell; Thierry Wannier; Martin E. Schwab; V. Reggie Edgerton

Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans?


Experimental Brain Research | 1999

Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys.

Yu Liu; Eric M. Rouiller

Abstract The mechanisms of recovery of manual dexterity after unilateral lesion of the sensorimotor cortex in adult primates remain a matter of debate. It has been proposed that the cortical zone adjacent to the lesion may take over part of the function of the damaged cortex. To investigate further this possibility, two adult (4–5 years old) macaque monkeys were trained to perform a natural precision-grip task to assess hand dexterity. Intracortical microstimulations (ICMS) were used to map the hand area in M1 on both hemispheres. Ibotenic acid was then injected intracortically to damage the representation in M1 of the preferred hand. Subsequent histological analysis indicated that the hand representation in M1 was indeed lesioned, but, due to a spead of ibotenic acid, the lesion encroached a significant extent of the hand representation in the primary somatosensory cortex. A few minutes after infusion of ibotenic acid, there was a complete loss of dexterity of the preferred hand, which lasted for 1–2 months. Later, a progressive functional recovery of the affected hand took place over a 3- to 4-month period, reaching a stable level corresponding to 30% of the pre-lesion behavioral score. ICMS remapping, conducted nine months after the lesion, revealed that stimulation of the intact or lesioned M1 did not induce any visible movement of the recovered hand. The M1 hand representation on the intact hemisphere was similar to that observed before the lesion. Transient inactivation of the M1 hand/arm areas or of the dorsal and ventral premotor cortical areas (PM) on both hemispheres was undertaken by using microinjections of the GABA-agonist muscimol. Inactivations of M1 had no effect. Inhibition of PM in the damaged hemisphere suppressed the recovered manual dexterity of the affected hand. These results suggest that PM plays a significant role in the incomplete functional recovery of hand dexterity following unilateral damage of the sensorimotor cortex in adult monkeys.


Experimental Brain Research | 1991

Auditory corticocortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas

Eric M. Rouiller; G. Simm; Alessandro E. P. Villa; Y. de Ribaupierre; F. de Ribaupierre

SummaryThe origin and laminar arrangement of the homolateral and callosal projections to the anterior (AAF), primary (AI), posterior (PAF) and secondary (AII) auditory cortical areas were studied in the cat by means of electrophysiological recording and WGA-HRP tracing techniques. The transcallosal projections to AAF, AI, PAF and AII were principally homotypic since the major source of input was their corresponding area in the contralateral cortex. Heterotypic transcallosal projections to AAF and AI were seen, originating from the contralateral AI and AAF, respectively. PAF received heterotypic commissural projections from the opposite ventroposterior auditory cortical field (VPAF). Heterotypic callosal inputs to AII were rare, originating from AAF and AI. The neurons of origin of the transcallosal connections were located mainly in layers II and III (70–92%), and less frequently in deep layers (V and VI, 8–30%). Single unit recordings provided evidence that both homotypic and heterotypic transcallosal projections connect corresponding frequency regions of the two hemispheres. The regional distribution of the anterogradely labeled terminals indicated that the homotypic and heterotypic auditory transcallosal projections are reciprocal. The present data suggest that the transcallosal auditory interconnections are segregated in 3 major parallel components (AAF-AI, PAF-VPAF and AII), maintaining a segregation between parallel functional channels already established for the thalamocortical auditory interconnections. For the intrahemispheric connections, the analysis of the retrograde tracing data revealed that AAF and AI receive projections from the homolateral cortical areas PAF, VPAF and AII, whose neurons of origin were located mainly in their deep (V and VI) cortical layers. The reciprocal interconnections between the homolateral AAF and AI did not show a preferential laminar arrangement since the neurons of origin were distributed almost evenly in both superficial (II and III) and deep (V and VI) cortical layers. On the contrary, PAF received inputs from the homolateral cortical fields AAF, AI, AII and VPAF, originating predominantly from their superficial (II and III) layers. The homolateral projections reaching AII originated mainly from the superficial layers of AAF and AI, but from the deep layers of VPAF and PAF. The laminar distribution of anterogradely labeled terminal fields, when they were dense enough for a confident identification, was systematically related to the laminar arrangement of neurons of origin of the reciprocal projection: a projection originating from deep layers was associated with a reciprocal projection terminating mainly in layer IV, whereas a projection originating from superficial layers was associated with a reciprocal projection terminating predominantly outside layer IV. This laminar distribution indicates that the homolateral auditory cortical interconnections have a feed-forward/feed-back organization, corresponding to a hierarchical arrangement of the auditory cortical areas, according to criteria previously established in the visual system of primates. The principal auditory cortical areas could be ranked into 4 distinct hierarchical levels. The tonotopically organized areas AAF and AI represent the lowest level. The second level corresponds to the non-tonotopically organized area AII. Higher, the tonotopically organized areas VPAF and PAF occupy the third and fourth hierarchical levels, respectively.


Neuroreport | 1995

Direct visual pathways for reaching movements in the macaque monkey

Judith Tanné; Driss Boussaoud; Noelle Boyer-Zeller; Eric M. Rouiller

The brain seems to process the location of objects faster than their intrinsic features, such as size, when these parameters are used to guide action. To uncover a potential anatomical substrate of these different processing speeds, we investigated in the monkey the pathways linking extrastriate visual cortex with the dorsal premotor area, a frontal area known to be involved in visually guided reaching movements. Retrogradely transported anatomical tracers were injected at physiologically defined sites and the distribution of labelled cells was examined in the ipsilateral cortex. We found a projection to the dorsal premotor cortex from the parieto-occipital area (PO). This area receives direct projections from the primary visual cortex (V1), and is part of the dorsal visual stream involved in the processing of spatial information. No direct projections to the dorsal premotor cortex arise from the ventral visual areas, thought to process object features. Our finding provides evidence for direct pathways from the dorsal visual stream to the dorsal premotor cortex and supports the view that the location of objects is processed faster by the brain than their intrinsic features.


Brain Research Bulletin | 2000

A comparative analysis of the morphology of corticothalamic projections in mammals

Eric M. Rouiller; Egbert Welker

Recent anatomical tracing methods have revealed new principles underlying the organization of corticothalamic connections in the mammalian nervous system. These data demonstrated the distribution of two types of synaptic contacts in the corticothalamic projection: small (<1 microm) and giant (2-10 microm) axon terminals. We compare the organization of corticothalamic projections in the auditory, somatosensory, visual, and motor systems of a variety of mammalian species, including the monkey. In all these systems and species, both types of corticothalamic terminals have been observed. Small endings formed the major corticothalamic terminal field, whereas giant terminals were less numerous and formed additional terminal fields together with small terminals. After comparing their spatial distribution, as well as the degree of reciprocity between the corticothalamic and thalamocortical projections, different roles are proposed for small and giant endings. Small terminals are typically present in the projection serving the feed-back control of the cerebral cortex on the thalamic nucleus from which it receives its main projection. In contrast, giant terminals are involved in feed-forward projections by which activity from a cortical area is distributed, via the thalamus, to other parts of the cerebral cortex. The cross-species and cross-systems comparison reveals differences in the mode of feed-forward projection, which may be involved in the activation of other parts of the same cortical area or form part of a projection that activates other cortical areas.


Experimental Brain Research | 1991

Corticofugal modulation of the information processing in the auditory thalamus of the cat

Alessandro E. P. Villa; Eric M. Rouiller; G. Simm; P. Zurita; Y. de Ribaupierre; F. de Ribaupierre

SummarySingle unit activity of 355 cells was recorded in the auditory thalamus of anesthetized cats before, during, and after the inactivation by cooling of the ipsilateral primary auditory cortex (AI). Most of the units (n = 288) showed similar functional characteristics of firing before and after the cryogenic blockade of AI. The spontaneous firing rate remained unchanged by cooling in 20% of the units and decreased in the majority of them (60%). In some regions, i.e. dorsal division of the medial geniculate body (MGB), lateral part of the posterior group of the thalamus, and auditory sector of the reticular nucleus of the thalamus, the maximum firing rate evoked by white noise bursts was generally affected by cooling in the same direction and to the same extent as the spontaneous activity. Units in the ventral division of MGB showed a characteristic increase of signal-to-noise ratio during cortical cooling. The corticofugal modulation led to the appearance or disappearance of the best frequency of tuning in 51 units and changed it by more than 0.5 octave in 34 units. The bandwidths of different response patterns to pure tones stimulation were used to define a set of functional properties. During cryogenic blockade of AI, two cortically modulated sub-populations of units were usually distinguished that exhibited changes for a given functional property. The complexity and diversity of the effects of cortical inactivation suggest that the corticothalamic projection may be the support for selective operations such as an adaptive filtering of the incoming acoustic signal at the thalamic level adjusted as a function of cortical activity.


Somatosensory and Motor Research | 1993

Comparison of the Connectional Properties of the Two Forelimb Areas of the Rat Sensorimotor Cortex: Support for the Presence of a Premotor or Supplementary Motor Cortical Area

Eric M. Rouiller; Véronique Moret; Fengyi Liang

The existence of multiple motor cortical areas that differ in some of their properties is well known in primates, but is less clear in the rat. The present study addressed this question from the point of view of connectional properties by comparing the afferent and efferent projections of the caudal forelimb area (CFA), considered to be the equivalent of the forelimb area of the primary motor cortex (MI), and a second forelimb motor representation, the rostral forelimb area (RFA). As a result of various tracing experiments (including double labeling), it was observed that CFA and RFA had reciprocal corticocortical connections characterized by preferential, asymmetrical, laminar distribution, indicating that RFA may occupy a different hierarchical level than CFA, according to criteria previously discussed in the visual cortex of primates. Furthermore, it was found that RFA, but not CFA, exhibited dense reciprocal connections with the insular cortex. With respect to their efferent projection to the basal ganglia, it was observed that CFA projected very densely to the lateral portion of the ipsilateral caudate putamen, whereas the contralateral projection was sparse and more restricted. The ipsilateral projection originating from RFA was slightly less dense than that from CFA, but it covered a larger portion of the caudate putamen (in the medial direction); the contralateral projection from RFA to the caudate putamen was of the same density and extent as the ipsilateral projection. The reciprocal thalamocortical and corticothalamic connections of RFA and CFA differed from each other in the sense that CFA was mainly interconnected with the ventrolateral thalamic nucleus, while RFA was mainly connected with the ventromedial thalamic nucleus. Altogether, these connectional differences, compared with the pattern of organization of the motor cortical areas in primates, suggest that RFA in the rat may well be an equivalent of the premotor or supplementary motor area. In contrast to the corticocortical, corticostriatal, and thalamocortical connections, RFA and CFA showed similar efferent projections to the subthalamic nucleus, substantia nigra, red nucleus, tectum, pontine nuclei, inferior olive, and spinal cord.

Collaboration


Dive into the Eric M. Rouiller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge