Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric M. Shepard is active.

Publication


Featured researches published by Eric M. Shepard.


Chemical Reviews | 2014

Radical S-Adenosylmethionine Enzymes

Joan B. Broderick; Benjamin R. Duffus; Kaitlin S. Duschene; Eric M. Shepard

It was once widely held that nearly all reactions in biology were catalyzed via mechanisms involving paired electron species. Beginning approximately 40 years ago, this paradigm was repeatedly challenged as examples of enzymatic reactions involving organic radical intermediates began to emerge, and it is now well accepted that biochemical reactions often involve organic radicals. Indeed, some of the most intensely studied metalloenzymes, including cytochrome P450, methane monooxygenase, ribonucleotide reductase, and the adenosylcobalamin (B12) enzymes, catalyze reactions employing organic radical intermediates. As a general rule, enzymes utilizing radical mechanisms catalyze reactions that would be difficult or impossible to catalyze by polar mechanisms, most often involving H-atom abstraction from an unactivated C–H bond. Among the more recent additions to the enzymes that catalyze radical reactions are the radical S-adenosylmethionine (radical SAM) enzymes, which were first classified as a superfamily in 2001.1 These enzymes utilize a [4Fe–4S] cluster and SAM to initiate a diverse set of radical reactions, in most or all cases via generation of a 5′-deoxyadenosyl radical (dAdo•) intermediate. Although 2001 marked the identification of this superfamily largely through bioinformatics, the discovery of iron metalloenzymes utilizing SAM to initiate radical reactions precedes this date by more than a decade. For example, early studies on the activation of pyruvate formate-lyase showed that it involved the generation of a stable protein radical,2 and was stimulated by the presence of iron, SAM, and an “activating component” from the cell extract now known to be the pyruvate-formate lyase activating enzyme (PFL-AE).3 The radical on PFL was ultimately shown to be located on a specific glycine residue,4 and was one of the first stable protein radicals characterized. PFL-AE was ultimately shown to contain a catalytically essential iron–sulfur cluster,5 and to use SAM as an essential component of PFL activation.6 The anaerobic ribonucleotide reductase, similar to PFL, contains a stable glycyl radical that was shown in early work to require an iron–sulfur cluster and SAM for activation.7 Likewise, preliminary investigations on lysine 2,3-aminomutase (LAM) published in 1970 demonstrated activation by ferrous ion and a strict requirement for SAM.8 Like PFL-AE, LAM was ultimately found to contain a catalytically essential iron–sulfur cluster.9 Work in Perry Frey’s lab showed that LAM used the adenosyl moiety of SAM to mediate hydrogen transfer in a manner similar to adenosylcobalamin-dependent rearrangements, implicating radical intermediates.10 Biotin synthase was first reported to require iron and SAM in 1995,11 and was subsequently shown to contain iron–sulfur clusters and to catalyze a radical reaction.12 These four enzyme systems (PFL/PFL-AE, aRNR, LAM, and biotin synthase) provided early indications of a new type of biological cofactor consisting of an iron–sulfur cluster and SAM, which initiate radical reactions using a fundamental new mechanism of catalysis.13 What none of us in the field in the early days probably anticipated, however, was just how ubiquitous these enzymes would turn out to be. The initial report of the superfamily by Sofia et al. identified ∼600 members;1 however, now that number is ∼48 100 members.14 These enzymes are found across the phylogenetic kingdom and catalyze an amazingly diverse set of reactions, the vast majority of which have yet to be characterized. This Review will begin by summarizing unifying features of radical SAM enzymes, and in subsequent sections delve further into the biochemical, spectroscopic, structural, and mechanistic details for those enzymes that have been characterized. In most cases, these enzymes are grouped by reaction type; however, in two cases (syntheses of modified tetrapyrroles and complex metal cluster cofactors), we have chosen to group together several radical SAM enzymes that catalyze different reaction types but which act together in the same or related metabolic pathways.


Structure | 2011

Insights into [FeFe]-Hydrogenase Structure, Mechanism, and Maturation

David W. Mulder; Eric M. Shepard; Jonathan E. Meuser; Neelambari Joshi; Paul W. King; Matthew C. Posewitz; Joan B. Broderick; John W. Peters

Hydrogenases are metalloenzymes that are key to energy metabolism in a variety of microbial communities. Divided into three classes based on their metal content, the [Fe]-, [FeFe]-, and [NiFe]-hydrogenases are evolutionarily unrelated but share similar nonprotein ligand assemblies at their active site metal centers that are not observed elsewhere in biology. These nonprotein ligands are critical in tuning enzyme reactivity, and their synthesis and incorporation into the active site clusters require a number of specific maturation enzymes. The wealth of structural information on different classes and different states of hydrogenase enzymes, biosynthetic intermediates, and maturation enzymes has contributed significantly to understanding the biochemistry of hydrogen metabolism. This review highlights the unique structural features of hydrogenases and emphasizes the recent biochemical and structural work that has created a clearer picture of the [FeFe]-hydrogenase maturation pathway.


Biochimica et Biophysica Acta | 2015

(FeFe)- and (NiFe)-hydrogenase diversity, mechanism, and maturation

John W. Peters; Gerrit J. Schut; Eric S. Boyd; David W. Mulder; Eric M. Shepard; Joan B. Broderick; Paul W. King; Michael W. W. Adams

The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.


Angewandte Chemie | 2010

[FeFe]‐Hydrogenase Cyanide Ligands Derived From S‐Adenosylmethionine‐Dependent Cleavage of Tyrosine

Rebecca C. Driesener; Martin R. Challand; Shawn E. McGlynn; Eric M. Shepard; Eric S. Boyd; Joan B. Broderick; John W. Peters; Peter L. Roach

Whats your poison? Hydrogenases catalyze the reversible formation of dihydrogen from two electrons and two protons. The maturation of the [FeFe]-hydrogenase active-site cofactor (H cluster) requires three gene products, HydE, HydF, and HydG. Cyanide has been characterized as one of the products of tyrosine cleavage by the S-adenosylmethionine-dependent enzyme HydG, clarifying its role in H-cluster biosynthesis. DOA=deoxyadenosine.


FEBS Letters | 2008

HydF as a scaffold protein in [FeFe] hydrogenase H‐cluster biosynthesis

Shawn E. McGlynn; Eric M. Shepard; Mark A. Winslow; A. V. Naumov; Kaitlin S. Duschene; Matthew C. Posewitz; William E. Broderick; Joan B. Broderick; John W. Peters

In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all three maturation proteins is sufficient to confer hydrogenase activity to purified inactive heterologously expressed HydA (expressed in the absence of HydE, HydF, and HydG). These results represent the first in vitro maturation of [FeFe] hydrogenase with purified proteins, and suggest that HydF functions as a scaffold upon which an H‐cluster intermediate is synthesized.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold

Eric M. Shepard; Shawn E. McGlynn; Alexandra L. Bueling; Celestine S. Grady-Smith; Simon J. George; Mark A. Winslow; Stephen P. Cramer; John W. Peters; Joan B. Broderick

The organometallic H cluster at the active site of [FeFe]-hydrogenase consists of a 2Fe subcluster coordinated by cyanide, carbon monoxide, and a nonprotein dithiolate bridged to a [4Fe-4S] cluster via a cysteinate ligand. Biosynthesis of this cluster requires three accessory proteins, two of which (HydE and HydG) are radical S-adenosylmethionine enzymes. The third, HydF, is a GTPase. We present here spectroscopic and kinetic studies of HydF that afford fundamental new insights into the mechanism of H-cluster assembly. Electron paramagnetic spectroscopy reveals that HydF binds both [4Fe-4S] and [2Fe-2S] clusters; however, when HydF is expressed in the presence of HydE and HydG (HydFEG), only the [4Fe-4S] cluster is observed by EPR. Insight into the fate of the [2Fe-2S] cluster harbored by HydF is provided by FTIR, which shows the presence of carbon monoxide and cyanide ligands in HydFEG. The thorough kinetic characterization of the GTPase activity of HydF shows that activity can be gated by monovalent cations and further suggests that GTPase activity is associated with synthesis of the 2Fe subcluster precursor on HydF, rather than with transfer of the assembled precursor to hydrogenase. Interestingly, we show that whereas the GTPase activity is independent of the presence of the FeS clusters on HydF, GTP perturbs the EPR spectra of the clusters, suggesting communication between the GTP- and cluster-binding sites. Together, the results indicate that the 2Fe subcluster of the H cluster is synthesized on HydF from a [2Fe-2S] cluster framework in a process requiring HydE, HydG, and GTP.


Journal of the American Chemical Society | 2010

(FeFe)-Hydrogenase Maturation: HydG-Catalyzed Synthesis of Carbon Monoxide

Eric M. Shepard; Benjamin R. Duffus; Simon J. George; Shawn E. McGlynn; Martin R. Challand; Kevin D. Swanson; Peter L. Roach; Stephen P. Cramer; John W. Peters; Joan B. Broderick

Biosynthesis of the unusual organometallic H-cluster at the active site of the [FeFe]-hydrogenase requires three accessory proteins, two of which are radical AdoMet enzymes (HydE, HydG) and one of which is a GTPase (HydF). We demonstrate here that HydG catalyzes the synthesis of CO using tyrosine as a substrate. CO production was detected by using deoxyhemoglobin as a reporter and monitoring the appearance of the characteristic visible spectroscopic features of carboxyhemoglobin. Assays utilizing (13)C-tyrosine were analyzed by FTIR to confirm the production of HbCO and to demonstrate that the CO product was synthesized from tyrosine. CO ligation is a common feature at the active sites of the [FeFe], [NiFe], and [Fe]-only hydrogenases; however, this is the first report of the enzymatic synthesis of CO in hydrogenase maturation.


Current Opinion in Chemical Biology | 2011

Biosynthesis of complex iron-sulfur enzymes

Eric M. Shepard; Eric S. Boyd; Joan B. Broderick; John W. Peters

Recent advances in our understanding of the mechanisms for the biosynthesis of the complex iron-sulfur (Fe-S) containing prosthetic groups associated with [FeFe]-hydrogenases and nitrogenases have revealed interesting parallels. The biosynthesis of the H-cluster ([FeFe]-hydrogenase) and the FeMo-co (nitrogenase) occurs through a coordinated process that involves the modification of Fe-S cluster precursors synthesized by the general host cell machinery (Isc/Suf). Key modifications to the Fe-S precursors are introduced by the activity of radical S-adenosylmethionine (SAM) enzymes on unique scaffold proteins. The transfer of the modified clusters to a cofactor-less structural apo-protein completes maturation. Together these features provide the basis for establishing unifying paradigms for complex Fe-S cluster biosynthesis for these enzymes.


Journal of the American Chemical Society | 2013

EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii.

David W. Mulder; Michael W. Ratzloff; Eric M. Shepard; Amanda S. Byer; Seth M. Noone; John W. Peters; Joan B. Broderick; Paul W. King

While a general model of H2 activation has been proposed for [FeFe]-hydrogenases, the structural and biophysical properties of the intermediates of the H-cluster catalytic site have not yet been discretely defined. Electron paramagnetic resonance (EPR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to characterize the H-cluster catalytic site, a [4Fe-4S]H subcluster linked by a cysteine thiolate to an organometallic diiron subsite with CO, CN, and dithiolate ligands, in [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii (CrHydA1). Oxidized CrHydA1 displayed a rhombic 2.1 EPR signal (g = 2.100, 2.039, 1.997) and an FTIR spectrum previously assigned to the oxidized H-cluster (Hox). Reduction of the Hox sample with 100% H2 or sodium dithionite (NaDT) nearly eliminated the 2.1 signal, which coincided with appearance of a broad 2.3-2.07 signal (g = 2.3-2.07, 1.863) and/or a rhombic 2.08 signal (g = 2.077, 1.935, 1.880). Both signals displayed relaxation properties similar to those of [4Fe-4S] clusters and are consistent with an S = 1/2 H-cluster containing a [4Fe-4S]H(+) subcluster. These EPR signals were correlated with differences in the CO and CN ligand modes in the FTIR spectra of H2- and NaDT-reduced samples compared with Hox. The results indicate that reduction of [4Fe-4S]H from the 2+ state to the 1+ state occurs during both catalytic H2 activation and proton reduction and is accompanied by structural rearrangements of the diiron subsite CO/CN ligand field. Changes in the [4Fe-4S]H oxidation state occur in electron exchange with the diiron subsite during catalysis and mediate electron transfer with either external carriers or accessory FeS clusters.


Biochemistry | 2009

Structure and inhibition of human diamine oxidase

Aaron P. McGrath; K.M. Hilmer; Charles A. Collyer; Eric M. Shepard; B.O Elmore; Doreen E. Brown; David M. Dooley; J.M. Guss

Humans have three functioning genes that encode copper-containing amine oxidases. The product of the AOC1 gene is a so-called diamine oxidase (hDAO), named for its substrate preference for diamines, particularly histamine. hDAO has been cloned and expressed in insect cells and the structure of the native enzyme determined by X-ray crystallography to a resolution of 1.8 A. The homodimeric structure has the archetypal amine oxidase fold. Two active sites, one in each subunit, are characterized by the presence of a copper ion and a topaquinone residue formed by the post-translational modification of a tyrosine. Although hDAO shares 37.9% sequence identity with another human copper amine oxidase, semicarbazide sensitive amine oxidase or vascular adhesion protein-1, its substrate binding pocket and entry channel are distinctly different in accord with the different substrate specificities. The structures of two inhibitor complexes of hDAO, berenil and pentamidine, have been refined to resolutions of 2.1 and 2.2 A, respectively. They bind noncovalently in the active-site channel. The inhibitor binding suggests that an aspartic acid residue, conserved in all diamine oxidases but absent from other amine oxidases, is responsible for the diamine specificity by interacting with the second amino group of preferred diamine substrates.

Collaboration


Dive into the Eric M. Shepard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Peters

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda S. Byer

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric S. Boyd

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Shawn E. McGlynn

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Mulder

National Renewable Energy Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge