Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric N. Salgado is active.

Publication


Featured researches published by Eric N. Salgado.


Accounts of Chemical Research | 2010

Metal-Directed Protein Self-Assembly

Eric N. Salgado; Robert J. Radford; F. Akif Tezcan

Proteins are natures premier building blocks for constructing sophisticated nanoscale architectures that carry out complex tasks and chemical transformations. Some 70%-80% of all proteins are thought to be permanently oligomeric; that is, they are composed of multiple proteins that are held together in precise spatial organization through noncovalent interactions. Although it is of great fundamental interest to understand the physicochemical basis of protein self-assembly, the mastery of protein-protein interactions (PPIs) would also allow access to novel biomaterials with natures favorite and most versatile building block. In this Account, we describe a new approach we have developed with this possibility in mind, metal-directed protein self-assembly (MDPSA), which utilizes the strength, directionality, and selectivity of metal-ligand interactions to control PPIs. At its core, MDPSA is inspired by supramolecular coordination chemistry, which exploits metal coordination for the self-assembly of small molecules into discrete, more-or-less predictable higher order structures. Proteins, however, are not exactly small molecules or simple metal ligands: they feature extensive, heterogeneous surfaces that can interact with each other and with metal ions in unpredictable ways. We begin by first describing the challenges of using entire proteins as molecular building blocks. We follow with an examination of our work on a model protein (cytochrome cb(562)), highlighting challenges toward establishing ground rules for MDPSA as well as progress in overcoming these challenges. Proteins are also natures metal ligands of choice. In MDPSA, once metal ions guide proteins into forming large assemblies, they are by definition embedded within extensive interfaces formed between protein surfaces. These complex surfaces make an inorganic chemists life somewhat difficult, yet they also provide a wide platform to modulate the metal coordination environment through distant, noncovalent interactions, exactly as natural metalloproteins and enzymes do. We describe our computational and experimental efforts toward restructuring the noncovalent interaction network formed between proteins surrounding the interfacial metal centers. This approach, of metal templating followed by the redesign of protein interfaces (metal-templated interface redesign, MeTIR), not only provides a route to engineer de novo PPIs and novel metal coordination environments but also suggests possible parallels with the evolution of metalloproteins.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Metal templated design of protein interfaces

Eric N. Salgado; Xavier I. Ambroggio; Jeffrey D. Brodin; Richard A. Lewis; Brian Kuhlman; F. Akif Tezcan

Metal coordination is a key structural and functional component of a large fraction of proteins. Given this dual role we considered the possibility that metal coordination may have played a templating role in the early evolution of protein folds and complexes. We describe here a rational design approach, Metal Templated Interface Redesign (MeTIR), that mimics the time course of a hypothetical evolutionary pathway for the formation of stable protein assemblies through an initial metal coordination event. Using a folded monomeric protein, cytochrome cb562, as a building block we show that its non-self-associating surface can be made self-associating through a minimal number of mutations that enable Zn coordination. The protein interfaces in the resulting Zn-directed, D2-symmetrical tetramer are subsequently redesigned, yielding unique protein architectures that self-assemble in the presence or absence of metals. Aside from its evolutionary implications, MeTIR provides a route to engineer de novo protein interfaces and metal coordination environments that can be tuned through the extensive noncovalent bonding interactions in these interfaces.


Journal of Biological Chemistry | 2010

Catalytic mechanism of human alpha-galactosidase.

Abigail I. Guce; Nathaniel E. Clark; Eric N. Salgado; Dina R. Ivanen; Anna A. Kulminskaya; Harry Brumer; Scott C. Garman

The enzyme α-galactosidase (α-GAL, also known as α-GAL A; E.C. 3.2.1.22) is responsible for the breakdown of α-galactosides in the lysosome. Defects in human α-GAL lead to the development of Fabry disease, a lysosomal storage disorder characterized by the buildup of α-galactosylated substrates in the tissues. α-GAL is an active target of clinical research: there are currently two treatment options for Fabry disease, recombinant enzyme replacement therapy (approved in the United States in 2003) and pharmacological chaperone therapy (currently in clinical trials). Previously, we have reported the structure of human α-GAL, which revealed the overall structure of the enzyme and established the locations of hundreds of mutations that lead to the development of Fabry disease. Here, we describe the catalytic mechanism of the enzyme derived from x-ray crystal structures of each of the four stages of the double displacement reaction mechanism. Use of a difluoro-α-galactopyranoside allowed trapping of a covalent intermediate. The ensemble of structures reveals distortion of the ligand into a 1S3 skew (or twist) boat conformation in the middle of the reaction cycle. The high resolution structures of each step in the catalytic cycle will allow for improved drug design efforts on α-GAL and other glycoside hydrolase family 27 enzymes by developing ligands that specifically target different states of the catalytic cycle. Additionally, the structures revealed a second ligand-binding site suitable for targeting by novel pharmacological chaperones.


Journal of Biological Chemistry | 2009

The catalytic mechanism of human alpha-galactosidase

Abigail I. Guce; Nathaniel E. Clark; Eric N. Salgado; Dina R. Ivanen; Anna A. Kulminskaya; Harry Brumer; Scott C. Garman

The enzyme α-galactosidase (α-GAL, also known as α-GAL A; E.C. 3.2.1.22) is responsible for the breakdown of α-galactosides in the lysosome. Defects in human α-GAL lead to the development of Fabry disease, a lysosomal storage disorder characterized by the buildup of α-galactosylated substrates in the tissues. α-GAL is an active target of clinical research: there are currently two treatment options for Fabry disease, recombinant enzyme replacement therapy (approved in the United States in 2003) and pharmacological chaperone therapy (currently in clinical trials). Previously, we have reported the structure of human α-GAL, which revealed the overall structure of the enzyme and established the locations of hundreds of mutations that lead to the development of Fabry disease. Here, we describe the catalytic mechanism of the enzyme derived from x-ray crystal structures of each of the four stages of the double displacement reaction mechanism. Use of a difluoro-α-galactopyranoside allowed trapping of a covalent intermediate. The ensemble of structures reveals distortion of the ligand into a 1S3 skew (or twist) boat conformation in the middle of the reaction cycle. The high resolution structures of each step in the catalytic cycle will allow for improved drug design efforts on α-GAL and other glycoside hydrolase family 27 enzymes by developing ligands that specifically target different states of the catalytic cycle. Additionally, the structures revealed a second ligand-binding site suitable for targeting by novel pharmacological chaperones.


Journal of the American Chemical Society | 2008

Metal-mediated self-assembly of protein superstructures: influence of secondary interactions on protein oligomerization and aggregation.

Eric N. Salgado; Richard A. Lewis; Jasmin Faraone-Mennella; F. Akif Tezcan

We have previously demonstrated that non-self-associating protein building blocks can oligomerize to form discrete supramolecular assemblies under the control of metal coordination. We show here that secondary interactions (salt bridges and hydrogen bonds) can be critical in guiding the metal-induced self-assembly of proteins. Crystallographic and hydrodynamic measurements on appropriately engineered cytochrome cb562 variants pinpoint the importance of a single salt-bridging arginine side chain in determining whether the protein monomers form a discrete Zn-induced tetrameric complex or heterogeneous aggregates. The combined ability to direct PPIs through metal coordination and secondary interactions should provide the specificity required for the construction of complex protein superstructures and the selective control of cellular processes that involve protein-protein association reactions.


Inorganic Chemistry | 2009

Control of protein oligomerization symmetry by metal coordination: C2 and C3 symmetrical assemblies through Cu(II) and Ni(II) coordination.

Eric N. Salgado; Richard A. Lewis; Susanne Mossin; Arnold L. Rheingold; F. Akif Tezcan

We describe the metal-dependent self-assembly of symmetrical protein homooligomers from protein building blocks that feature appropriately engineered metal-chelating motifs on their surfaces. Crystallographic studies indicate that the same four-helix-bundle protein construct, MBPC-1, can self-assemble into C(2) and C(3) symmetrical assemblies dictated by Cu(II) and Ni(II) coordination, respectively. The symmetry inherent in metal coordination can thus be directly applied to biological self-assembly.


Journal of the American Chemical Society | 2010

Evolution of metal selectivity in templated protein interfaces.

Jeffrey D. Brodin; A Medina-Morales; T Ni; Eric N. Salgado; Xavier I. Ambroggio; F.A. Tezcan

Selective binding by metalloproteins to their cognate metal ions is essential to cellular survival. How proteins originally acquired the ability to selectively bind metals and evolved a diverse array of metal-centered functions despite the availability of only a few metal-coordinating functionalities remains an open question. Using a rational design approach (Metal-Templated Interface Redesign), we describe the transformation of a monomeric electron transfer protein, cytochrome cb(562), into a tetrameric assembly ((C96)RIDC-1(4)) that stably and selectively binds Zn(2+) and displays a metal-dependent conformational change reminiscent of a signaling protein. A thorough analysis of the metal binding properties of (C96)RIDC-1(4) reveals that it can also stably harbor other divalent metals with affinities that rival (Ni(2+)) or even exceed (Cu(2+)) those of Zn(2+) on a per site basis. Nevertheless, this analysis suggests that our templating strategy simultaneously introduces an increased bias toward binding a higher number of Zn(2+) ions (four high affinity sites) versus Cu(2+) or Ni(2+) (two high affinity sites), ultimately leading to the exclusive selectivity of (C96)RIDC-1(4) for Zn(2+) over those ions. More generally, our results indicate that an initial metal-driven nucleation event followed by the formation of a stable protein architecture around the metal provides a straightforward path for generating structural and functional diversity.


PLOS Pathogens | 2014

Structural Correlates of Rotavirus Cell Entry

Aliaa H. Abdelhakim; Eric N. Salgado; Xiaofeng Fu; Mithun Pasham; Daniela Nicastro; Tomas Kirchhausen; Stephen C. Harrison

Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex—for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼700 Å inner capsid particle (“double-layered particle”, DLP). We label with distinct fluorescent tags the DLP and each of the two outer-layer proteins and track the fates of each species as the particles bind and enter BSC-1 cells. Virions attach to their glycolipid receptors in the host cell membrane and rapidly become inaccessible to externally added agents; most particles that release their DLP into the cytosol have done so by ∼10 minutes, as detected by rapid diffusional motion of the DLP away from residual outer-layer proteins. Electron microscopy shows images of particles at various stages of engulfment into tightly fitting membrane invaginations, consistent with the interpretation that rotavirus particles drive their own uptake. Electron cryotomography of membrane-bound virions also shows closely wrapped membrane. Combined with high resolution structural information about the viral components, these observations suggest a molecular model for membrane disruption and DLP penetration.


Inorganic Chemistry | 2011

Templated construction of a zn-selective protein dimerization motif.

Eric N. Salgado; Jeffrey D. Brodin; M.M To; F.A. Tezcan

Here, we report that the approach of metal-templated ligand synthesis can be applied to construct a dimeric protein assembly ((BMOE)RIDC1(2)), which is stabilized by noncovalent interactions and flexible covalent cross-linkers around the Zn templates. Despite its flexibility, (BMOE)RIDC1(2) selectively binds Zn(II) over other divalent metals and undergoes dimerization upon metal binding. Such simultaneous fulfillment of plasticity and selectivity is a hallmark of cellular signaling events that involve ligand/metal-induced protein dimerization.


Journal of Virology | 2017

Single-Particle Detection of Transcription following Rotavirus Entry

Eric N. Salgado; Srigokul Upadhyayula; Stephen C. Harrison

ABSTRACT Infectious rotavirus particles are triple-layered, icosahedral assemblies. The outer layer proteins, VP4 (cleaved to VP8* and VP5*) and VP7, surround a transcriptionally competent, double-layer particle (DLP), which they deliver into the cytosol. During entry of rhesus rotavirus, VP8* interacts with cell surface gangliosides, allowing engulfment into a membrane vesicle by a clathrin-independent process. Escape into the cytosol and outer-layer shedding depend on interaction of a hydrophobic surface on VP5* with the membrane bilayer and on a large-scale conformational change. We report here experiments that detect the fate of released DLPs and their efficiency in initiating RNA synthesis. By replacing the outer layer with fluorescently tagged, recombinant proteins and also tagging the DLP, we distinguished particles that have lost their outer layer and entered the cytosol (uncoated) from those still within membrane vesicles. We used fluorescent in situ hybridization with probes for nascent transcripts to determine how soon after uncoating transcription began and what fraction of the uncoated particles were active in initiating RNA synthesis. We detected RNA synthesis by uncoated particles as early as 15 min after adding virus. The uncoating efficiency was 20 to 50%; of the uncoated particles, about 10 to 15% synthesized detectable RNA. In the format of our experiments, about 10% of the added particles attached to the cell surface, giving an overall ratio of added particles to RNA-synthesizing particles of between 250:1 and 500:1, in good agreement with the ratio of particles to focus-forming units determined by infectivity assays. Thus, RNA synthesis by even a single, uncoated particle can initiate infection in a cell. IMPORTANCE The pathways by which a virus enters a cell transform its packaged genome into an active one. Contemporary fluorescence microscopy can detect individual virus particles as they enter cells, allowing us to map their multistep entry pathways. Rotaviruses, like most viruses that lack membranes of their own, disrupt or perforate the intracellular, membrane-enclosed compartment into which they become engulfed following attachment to a cell surface, in order to gain access to the cell interior. The properties of rotavirus particles make it possible to determine molecular mechanisms for these entry steps. In the work described here, we have asked the following question: what fraction of the rotavirus particles that penetrate into the cell make new viral RNA? We find that of the cell-attached particles, between 20 and 50% ultimately penetrate, and of these, about 10% make RNA. RNA synthesis by even a single virus particle can initiate a productive infection.

Collaboration


Dive into the Eric N. Salgado's collaboration.

Top Co-Authors

Avatar

F. Akif Tezcan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen C. Harrison

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Xavier I. Ambroggio

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Abigail I. Guce

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Brian Kuhlman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nathaniel E. Clark

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Scott C. Garman

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Dina R. Ivanen

Petersburg Nuclear Physics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge