Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric O. Freed is active.

Publication


Featured researches published by Eric O. Freed.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Plasma membrane rafts play a critical role in HIV-1 assembly and release

Akira Ono; Eric O. Freed

HIV-1 particle production occurs in a series of steps promoted by the viral Gag protein. Although it is well established that assembly and release take place at the plasma membrane, the nature of membrane assembly sites remains poorly understood. We show here that Gag specifically associates with cholesterol-enriched microdomains (“rafts”) at the plasma membrane. Kinetic studies demonstrate that raft association follows membrane binding, and the analysis of Gag mutants reveals that, whereas the N terminus of Gag mediates raft binding, this association is greatly enhanced by Gag–Gag interaction domains. We observe that depletion of cellular cholesterol markedly and specifically reduces HIV-1 particle production. Furthermore, treatment of virus-producing cells or virus particles with raft-disrupting agents significantly impairs virus infectivity. These results identify the association of Gag with plasma membrane rafts as an important step in HIV-1 replication. These findings may lead to novel strategies for suppressing HIV-1 replication in vivo.


Journal of Virology | 2002

Viral Late Domains

Eric O. Freed

Domains have been identified in the Gag proteins of a number of retroviruses, and in the matrix proteins of the rhabdoviruses and filoviruses, that play a critical role in the pinching off of virus particles from the plasma membrane. These sequences are collectively termed late or L domains to reflect their function late in the virus budding process. One of the intriguing features of these L domains is that they all contain highly conserved motifs known to mediate protein-protein interactions between cellular proteins. Three classes of motifs have been defined in viral L domains: PTAP, PPXY, and YXXL. In each case, the integrity of these motifs appears to be essential for L domain activity, suggesting that L domains function by interacting with a host factor(s). This minireview summarizes the present state of our knowledge concerning viral L domain function and describes recent tantalizing clues regarding the identity of the cellular partners with which L domains interact.


Proceedings of the National Academy of Sciences of the United States of America | 2003

PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing

Feng Li; R. Goila-Gaur; Karl Salzwedel; N. R. Kilgore; M. Reddick; C. Matallana; A. Castillo; D. Zoumplis; D. E. Martin; J. M. Orenstein; G. P. Allaway; Eric O. Freed; Carl T. Wild

New HIV therapies are urgently needed to address the growing problem of drug resistance. In this article, we characterize the anti-HIV drug candidate 3-O-(3′,3′-dimethylsuccinyl) betulinic acid (PA-457). We show that PA-457 potently inhibits replication of both WT and drug-resistant HIV-1 isolates and demonstrate that the compound acts by disrupting a late step in Gag processing involving conversion of the capsid precursor (p25) to mature capsid protein (p24). We find that virions from PA-457-treated cultures are noninfectious and exhibit an aberrant particle morphology characterized by a spherical, acentric core and a crescent-shaped, electron-dense shell lying just inside the viral membrane. To identify the determinants of compound activity we selected for PA-457-resistant virus in vitro. Consistent with the effect on Gag processing, we found that mutations conferring resistance to PA-457 map to the p25 to p24 cleavage site. PA-457 represents a unique class of anti-HIV compounds termed maturation inhibitors that exploit a previously unidentified viral target, providing additional opportunities for HIV drug discovery.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function

Dimiter G. Demirov; Akira Ono; Jan M. Orenstein; Eric O. Freed

Efficient budding of HIV-1 from the plasma membrane of infected cells requires the function of a 6-kDa protein known as p6. A highly conserved Pro-Thr-Ala-Pro (PTAP) motif (the “late” or “L” domain), is critical for the virus-budding activity of p6. Recently, it was demonstrated that the product of tumor susceptibility gene 101 (TSG101), which contains at its N terminus a domain highly related to ubiquitin-conjugating (E2) enzymes, binds HIV-1 Gag in a p6-dependent fashion. We examined the impact of overexpressing the N-terminal region of TSG101 on HIV-1 particle assembly and release. We observed that this domain (referred to as TSG-5′) potently inhibits virus production. Examination of cells coexpressing HIV-1 Gag and TSG-5′ by electron microscopy reveals a defect in virus budding reminiscent of that observed with p6 L domain mutants. In addition, the effect of TSG-5′ depends on an intact p6 L domain; the assembly and release of virus-like particles produced by Gag mutants lacking a functional p6 PTAP motif is not significantly affected by TSG-5′. Furthermore, assembly and release of murine leukemia virus and Mason–Pfizer monkey virus are insensitive to TSG-5′. TSG-5′ is incorporated into virions, confirming the Gag/TSG101 interaction in virus-producing cells. Mutations that inactivate the p6 L domain block TSG-5′ incorporation. These data demonstrate a link between the E2-like domain of TSG101 and HIV-1 L domain function, and indicate that TSG101 derivatives can act as potent and specific inhibitors of HIV-1 replication by blocking virus budding.


Journal of Virology | 2004

Cell-Type-Dependent Targeting of Human Immunodeficiency Virus Type 1 Assembly to the Plasma Membrane and the Multivesicular Body

Akira Ono; Eric O. Freed

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) assembly-and-release pathway begins with the targeting of the Gag precursor to the site of virus assembly. The molecular mechanism by which Gag is targeted to the appropriate subcellular location remains poorly understood. Based on the analysis of mutant Gag proteins, we and others have previously demonstrated that a highly basic patch in the matrix (MA) domain of Gag is a major determinant of Gag transport to the plasma membrane. In this study, we determined that in HeLa and T cells, the MA mutant Gag proteins that are defective in plasma membrane targeting form virus particles in a CD63-positive compartment, defined as the late endosome or multivesicular body (MVB). Interestingly, we find that in primary human macrophages, both wild-type (WT) and MA mutant Gag proteins are targeted specifically to the MVB. Despite the fact that particle assembly in macrophages occurs at an intracellular site rather than at the plasma membrane, we observe that WT Gag expressed in this cell type is released as extracellular virions with high efficiency. These results demonstrate that Gag targeting to and assembly in the MVB are physiologically important steps in HIV-1 virus particle production in macrophages and that particle release in this cell type may follow an exosomal pathway. To determine whether Gag targeting to the MVB is the result of an interaction between the late domain in p6Gag and the MVB sorting machinery (e.g., TSG101), we examined the targeting and assembly of Gag mutants lacking p6. Significantly, the MVB localization of Gag was still observed in the absence of p6, suggesting that an interaction between Gag and TSG101 is not required for Gag targeting to the MVB. These data are consistent with a model for Gag targeting that postulates two different cellular binding partners for Gag, one on the plasma membrane and the other in the MVB.


Journal of Biological Chemistry | 1995

The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection.

Eric O. Freed; Malcolm A. Martin

Enveloped viruses enter cells by a two-step process. The first step involves the binding of a viral surface protein to receptors on the plasma membrane of the host cell. After receptor binding, a membrane fusion reaction takes place between the lipid bilayer of the viral envelope and host cell membranes. This fusion reaction can occur either at the plasma membrane or in acidic endosomes following receptor-mediated endocytosis. In either case, the membrane fusion reaction delivers the viral nucleocapsid into the host cytoplasm, allowing the infection to proceed. Viral proteins embedded in the lipid bilayer of the viral envelope (known variously as surface, spike, or envelope proteins) catalyze receptor binding and membrane fusion reactions. The critical involvement of these viral proteins in receptor binding and membrane fusion has stimulated intensive investigation aimed at understanding the mechanisms by which these proteins function. In this article, we provide a brief overview of the roles envelope (Env) glycoproteins play in the human immunodeficiency virus type 1 (HIV-1) life cycle.


Somatic Cell and Molecular Genetics | 2001

HIV-1 replication.

Eric O. Freed

In general terms, the replication cycle of lentiviruses, including HIV-1, closely resembles that of other retroviruses.1 There are, however, a number of unique aspects of HIV replication; for example, the HIVs and SIVs target receptors and coreceptors distinct from those used by other retroviruses. Lentiviruses encode a number of regulatory and accessory proteins not encoded by the genomes of the prototypical “simple” retroviruses. Of particular interest from the gene therapy perspective, lentiviruses possess the ability to productively infect some types of non-dividing cells. This chapter, while reiterating certain points discussed in Chapter 1, will attempt to focus on issues unique to HIV-1 replication.The HIV-1 genome encodes the major structural and non-structural proteins common to all replication-competent retroviruses (Fig. 1, and Chapter 1). From the 5′- to 3′-ends of the genome are found the gag (for group-specific antigen), pol (for polymerase), and env (for envelope glycoprotein) genes. The gag gene encodes a polyprotein precursor whose name, Pr55Gag, is based on its molecular weight. Pr55Gag is cleaved by the viral protease (PR) to the mature Gag proteins matrix (also known as MA or p17), capsid (CA or p24), nucleocapsid (NC or p7), and p6. Two spacer peptides, p2 and p1, are also generated upon Pr55Gag processing. The pol-encoded enzymes are initially synthesized as part of a large polyprotein precursor, Pr160GagPol, whose synthesis results from a rare frameshifting event during Pr55Gag translation. The individual pol-encoded enzymes, PR, reverse transcriptase (RT), and integrase (IN), are cleaved from Pr160GagPol by the viral PR.The envelope (Env) glycoproteins are also synthesized as a polyprotein precursor (Fig. 1). Unlike the Gag and Pol precursors, which are cleaved by the viral PR, the Env precursor, known as gp160, is processed by a cellular protease during Env trafficking to the cell surface. gp160 processing results in the generation of the surface (SU) Env glycoprotein gp120 and the transmembrane (TM) glycoprotein gp41. gp120 contains the determinants that interact with receptor and coreceptor, while gp41 not only anchors the gp120/gp41 complex in the membrane (Fig. 2), but also contains domains that are critical for catalyzing the membrane fusion reaction between viral and host lipid bilayers during virus entry. Comparison of env sequences from a large number of virus isolates revealed that gp120 is organized into five conserved regions (C1-C5) and five highly variable domains (V1-V5). The variable regions tend to be located in disulfide-linked loops. gp41 is composed of three major domains: the ectodomain (which contains determinants essential for membrane fusion), the transmembrane anchor sequence, and the cytoplasmic tail.In addition to the gag, pol, and env genes, HIV-1 also encodes a number of regulatory and accessory proteins. Tat is critical for transcription from the HIV-1 LTR and Rev plays a major role in the transport of viral RNAs from the nucleus to the cytoplasm. Vpu, Vif, Vpr and Nef have been termed “accessory” or “auxiliary” proteins to reflect the fact that they are not uniformly required for virus replication. The functions of these very interesting proteins will be discussed in more detail at the end of this chapter.HIV replication proceeds in a series of events that can be divided into two overall phases: “early” and “late” (Fig. 3).1 Although some events occur in a concerted or simultaneous fashion, the replication cycle can be viewed most simply as proceeding in an ordered, step-wise manner. In this chapter, each step in virus replication will be considered; additional information can be obtained from the more detailed reviews and primary references that are cited.


Journal of Molecular Biology | 2011

HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation

Mary Ann Checkley; Benjamin G. Luttge; Eric O. Freed

The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.


Journal of Virology | 2000

Role of the Gag Matrix Domain in Targeting Human Immunodeficiency Virus Type 1 Assembly

Akira Ono; Jan M. Orenstein; Eric O. Freed

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) particle formation and the subsequent initiation of protease-mediated maturation occur predominantly on the plasma membrane. However, the mechanism by which HIV-1 assembly is targeted specifically to the plasma membrane versus intracellular membranes is largely unknown. Previously, we observed that mutations between residues 84 and 88 of the matrix (MA) domain of HIV-1 Gag cause a retargeting of virus particle formation to an intracellular site. In this study, we demonstrate that the mutant virus assembly occurs in the Golgi or in post-Golgi vesicles. These particles undergo core condensation in a protease-dependent manner, indicating that virus maturation can occur not only on the plasma membrane but also in the Golgi or post-Golgi vesicles. The intracellular assembly of mutant particles is dependent on Gag myristylation but is not influenced by p6Gag or envelope glycoprotein expression. Previous characterization of viral revertants suggested a functional relationship between the highly basic domain of MA (amino acids 17 to 31) and residues 84 to 88. We now demonstrate that mutations in the highly basic domain also retarget virus particle formation to the Golgi or post-Golgi vesicles. Although the basic domain has been implicated in Gag membrane binding, no correlation was observed between the impact of mutations on membrane binding and Gag targeting, indicating that these two functions of MA are genetically separable. Plasma membrane targeting of Gag proteins with mutations in either the basic domain or between residues 84 and 88 was rescued by coexpression with wild-type Gag; however, the two groups of MA mutants could not rescue each other. We propose that the highly basic domain of MA contains a major determinant of HIV-1 Gag plasma membrane targeting and that mutations between residues 84 and 88 disrupt plasma membrane targeting through an effect on the basic domain.


Journal of Virology | 2000

Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail.

Tsutomu Murakami; Eric O. Freed

ABSTRACT The incorporation of envelope (Env) glycoproteins into virions is an essential step in the retroviral replication cycle. Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), encode Env glycoproteins with unusually long cytoplasmic tails, the functions of which have not been fully elucidated. In this study, we examine the effects on virus replication of a number of mutations in a helical motif (α-helix 2) located near the center of the HIV-1 gp41 cytoplasmic tail. We find that, in T-cell lines, small deletions in this domain disrupt the incorporation of Env glycoproteins into virions and markedly impair virus infectivity. Through the analysis of viral revertants, we demonstrate that a single amino acid change (34VI) in the matrix domain of Gag reverses the Env incorporation and infectivity defect imposed by a small deletion near the C terminus of α-helix 2. These results provide genetic evidence, in the context of infected T cells, for an interaction between HIV-1 matrix and the gp41 cytoplasmic tail and identify domains of both proteins involved in this putative interaction.

Collaboration


Dive into the Eric O. Freed's collaboration.

Top Co-Authors

Avatar

Sherimay D. Ablan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kunio Nagashima

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Ono

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Anjali Joshi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ferri Soheilian

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Abdul A. Waheed

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Karl Salzwedel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge