Eric O'Neill
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric O'Neill.
Molecular and Cellular Biology | 2006
Linda Rushworth; Alison Hindley; Eric O'Neill; Walter Kolch
ABSTRACT The Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) pathway participates in the control of many fundamental cellular processes including proliferation, survival, and differentiation. The pathway is deregulated in up to 30% of human cancers, often due to mutations in Ras and the B-Raf isoform. Raf-1 and B-Raf can form heterodimers, and this may be important for cellular transformation. Here, we have analyzed the biochemical and biological properties of Raf-1/B-Raf heterodimers. Isolated Raf-1/B-Raf heterodimers possessed a highly increased kinase activity compared to the respective homodimers or monomers. Heterodimers between wild-type Raf-1 and B-Raf mutants with low or no kinase activity still displayed elevated kinase activity, as did heterodimers between wild-type B-Raf and kinase-negative Raf-1. In contrast, heterodimers containing both kinase-negative Raf-1 and kinase-negative B-Raf were completely inactive, suggesting that the kinase activity of the heterodimer specifically originates from Raf and that either kinase-competent Raf isoform is sufficient to confer high catalytic activity to the heterodimer. In cell lines, Raf-1/B-Raf heterodimers were found at low levels. Heterodimerization was enhanced by 14-3-3 proteins and by mitogens independently of ERK. However, ERK-induced phosphorylation of B-Raf on T753 promoted the disassembly of Raf heterodimers, and the mutation of T753 prolonged growth factor-induced heterodimerization. The B-Raf T753A mutant enhanced differentiation of PC12 cells, which was previously shown to be dependent on sustained ERK signaling. Fine mapping of the interaction sites by peptide arrays suggested a complex mode of interaction involving multiple contact sites with a main Raf-1 binding site in B-Raf encompassing T753. In summary, our data suggest that Raf-1/B-Raf heterodimerization occurs as part of the physiological activation process and that the heterodimer has distinct biochemical properties that may be important for the regulation of some biological processes.
British Journal of Cancer | 2004
Eric O'Neill; Walter Kolch
The Raf-MEK-ERK signalling pathway controls fundamental cellular processes including proliferation, differentiation and survival. It remains enigmatic how this pathway can reliably convert a myriad of extracellular stimuli in specific biological responses. Recent results have shown that the Raf family isoforms A-Raf, B-Raf and Raf-1 have different physiological functions. Here we review how Raf isozyme diversity contributes to the specification of functional diversity, in particular regarding the role of Raf isozymes in cancer.
Molecular Cell | 2011
David Matallanas; David Romano; Fahd Al-Mulla; Eric O'Neill; Waleed Al-Ali; Piero Crespo; Brendan Doyle; Colin Nixon; Owen J. Sansom; Matthias Drosten; Mariano Barbacid; Walter Kolch
K-Ras mutations are frequent in colorectal cancer (CRC), albeit K-Ras is the only Ras isoform that can elicit apoptosis. Here, we show that mutant K-Ras directly binds to the tumor suppressor RASSF1A to activate the apoptotic MST2-LATS1 pathway. In this pathway LATS1 binds to and sequesters the ubiquitin ligase Mdm2 causing stabilization of the tumor suppressor p53 and apoptosis. However, mutant Ras also stimulates autocrine activation of the EGF receptor (EGFR) which counteracts mutant K-Ras-induced apoptosis. Interestingly, this protection requires the wild-type K-Ras allele, which inhibits the MST2 pathway in part via AKT activation. Confirming the pathophysiological relevance of the molecular findings, we find a negative correlation between K-Ras mutation and MST2 expression in human CRC patients and CRC mouse models. The small number of tumors with co-expression of mutant K-Ras and MST2 has elevated apoptosis rates. Thus, in CRC, mutant K-Ras transformation is supported by the wild-type allele.
Current Biology | 2009
Garth Hamilton; Karen S. Yee; Simon Scrace; Eric O'Neill
Hypermethylation of CpG islands in the RASSF1 promoter is one of the most frequent events identified in human cancer. The epigenetic-driven loss of RASSF1A protein expression is observed more often in tumors of higher grade and correlates with a decreased responsiveness to DNA-damaging therapy. Ras association domain-containing family 1A (RASSF1A) promotes apoptosis by signaling through the MST2 and LATS1 kinases, leading to stabilization of the YAP1/p73 transcriptional complex. Here we provide evidence for a new pathway linking DNA damage signaling to RASSF1A via the main sensor of double-strand breaks in cells, ataxia telangiectasia mutated (ATM). We show that, upon DNA damage, RASSF1A is phosphorylated by ATM on Ser131 and is involved in the activation of both MST2 and LATS1, leading to the stabilization of p73. Furthermore, lung and ovarian tumor cell lines that retain RASSF1A expression commonly harbor polymorphisms in the region of Ser131, and our analysis shows that the S131F polymorphism conveys resistance to DNA-damaging agents. Thus, we present a novel DNA damage pathway emanating from ATM that is frequently disabled in tumors via epigenetic silencing of RASSF1 or mutation of an ATM phosphorylation site.
Molecular and Cellular Biology | 2009
Ruth M. Densham; Eric O'Neill; June Munro; Ireen König; Kurt I. Anderson; Walter Kolch; Michael F. Olson
ABSTRACT As well as providing a structural framework, the actin cytoskeleton plays integral roles in cell death, survival, and proliferation. The disruption of the actin cytoskeleton results in the activation of the c-Jun N-terminal kinase (JNK) stress-activated protein kinase (SAPK) pathway; however, the sensor of actin integrity that couples to the JNK pathway has not been characterized in mammalian cells. We now report that the mammalian Ste20-like (MST) kinases mediate the activation of the JNK pathway in response to the disruption of the actin cytoskeleton. One consequence of actin disruption is the JNK-mediated stabilization of p21Waf1/Cip1 (p21) via the phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK- and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that, in addition to being components of the Salvador-Warts-Hippo tumor suppressor network and binding partners of c-Raf and the RASSF1A tumor suppressor, MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.
Cell Cycle | 2005
Eric O'Neill; Walter Kolch
The Raf-1 kinase has a well established role in activating the MEK-ERK/MAPK pathway.However, accumulating evidence including the phenotype of Raf-1-/- mice suggested thatRaf-1 may have other functions independent of its role as MEK activator, in particularpertaining to protection against apoptosis. We have recently demonstrated a new role of Raf-1 by showing that Raf-1 controls the proapoptotic kinase MST2/Hippo. In mammalian cellsMST2 is activated by stress signals and causes apoptosis when overexpressed. Its Drosophilahomologue Hippo regulates apoptosis and cell cycle arrest during differentiation. Raf-1inhibits MST2 by preventing its dimerisation and recruiting a phosphatase that removesactivating phosphorylations on MST2. Both functions require Raf-1 binding to MST2, butare independent of Raf-1’s kinase activity and the ERK pathway. Downregulation of MST2by siRNA reverts the apoptosis hypersensitivity of Raf-1-/- mouse fibroblasts. In contrast, thedownregulation of Raf-1 in Raf-1+/+ cells and human cancer cell lines enhances susceptibilityto Fas induced apoptosis, which is rescued by concomitant downregulation of both Raf-1 andMST2. The MST2:Raf-1 complex is dissociated by stress signals as well as mitogens. Stresssignals robustly activate MST2 and trigger apoptosis. Mitogens only make MST2 permissivefor activation by releasing it from Raf-1, and in addition activate survival pathways allowingproliferation. Thus, by linking mitogenic and apoptotic signalling the MST:Raf-1 complexmay serve as a safeguard against unlicensed proliferation.
Cancer Research | 2005
Eric O'Neill; David Matallanas; Walter Kolch
Emerging evidence suggests that the proapoptotic kinase mammalian sterile 20-like kinase 2 (MST2) acts in a novel tumor suppression pathway. Recently, we showed that Raf-1 kinase sequesters and inhibits MST2 and that this event is critical for Raf-mediated cell survival. In this review, we summarize Raf control of MST2 and we outline a novel pathway involving the downstream effector proteins Salvador and Warts/Lats that may act to limit the positive effects of Raf-mitogen-activated protein kinase signaling in cancer cells.
Biochimica et Biophysica Acta | 2015
Emmanouil Fokas; Eric O'Neill; Alex Gordon-Weeks; Somnath Mukherjee; W.G. McKenna; Ruth J. Muschel
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Despite improvements in the clinical management, the prognosis of PDAC remains dismal. In the present comprehensive review, we will examine the knowledge of PDAC genetics and the new insights into human genome sequencing and clonal evolution. Additionally, the biology and the role of the stroma in tumour progression and response to treatment will be presented. Furthermore, we will describe the evidence on tumour chemoresistance and radioresistance and will provide an overview on the recent advances in PDAC metabolism and circulating tumour cells. Next, we will explore the characteristics and merits of the different mouse models of PDAC. The inflammatory milieu and the immunosuppressive microenvironment mediate tumour initiation and treatment failure. Hence, we will also review the inflammatory and immune escaping mechanisms and the new immunotherapies tested in PDAC. A better understanding of the different mechanisms of tumour formation and progression will help us to identify the best targets for testing in future clinical studies of PDAC.
Cell Cycle | 2008
David Matallanas; David Romano; Garth Hamilton; Walter Kolch; Eric O'Neill
The regulation of cell cycle and apoptosis is fundamental to the control of cell growth and organism homeostasis. Failure to efficiently regulate these processes often results in the increased cell growth observed in tumours. Accumulation of genetic lesions frequently eliminates these regulatory steps so it is imperative that multiple signalling pathways are employed to ensure that efficient control is maintained. Over the last few years a novel signalling pathway entered the limelight that prevents inappropriate activation of the cell cycle and can elicit apoptosis to limit cell numbers. Denoted the MST/hippo pathway, it is involved in regulating cell number in organism development and tumour progression. Here we aim to review the evidence for a conserved pathway from flies to mammals, and of equal importance to initiate the discussion on the additional cellular and signalling processes that have been adopted by this pathway to achieve further regulation and diversified cellular outcomes in mammals.
Current Biology | 2009
Ashraf Dallol; Luke B. Hesson; David Matallanas; Wendy N. Cooper; Eric O'Neill; Eamonn R. Maher; Walter Kolch; Farida Latif
RASSF1A is a tumor suppressor gene that is inactivated by hypermethylation of its promoter region in most types of human cancers. The incidence of spontaneous or induced tumors is significantly higher in Rassf1a(-/-) mice than in wild-type mice, confirming the tumor suppressor function of RASSF1A. RASSF1A promotes apoptosis mainly through its interaction with the proapoptotic serine/threonine STE20-like kinases MST1 and 2. However, Rassf1a(-/-) mice do not show overt signs of deregulated apoptosis, suggesting that other RASSF1A effectors are also critical for tumor suppression. In a proteomics screen, we identified RAN GTPase, MST1 and 2 kinases, and alpha- and gamma-tubulin as RASSF1A-interacting proteins. We show that RASSF1A-induced microtubule hyperstability, a hallmark of RASSF1A expression, is RAN-GTP dependent. RASSF1A promotes the accumulation of the GTP-bound form of RAN via the MST2-induced phosphorylation of RCC1. Depletion of RASSF1A results in mislocalization of RCC1 to the mitotic spindle and spindle poles, leading to mitotic spindle abnormalities and prometaphase block. A similar mitotic delay is also observed with MST2 depletion. These findings reveal a mechanism for how RASSF1A controls microtubule stability and for how its loss compromises the integrity of the mitotic spindle, leading to aneuploidy and tumorigenesis.