Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric P. Palkovacs is active.

Publication


Featured researches published by Eric P. Palkovacs.


Ecology | 2008

Intraspecific variation in a predator affects community structure and cascading trophic interactions.

David M. Post; Eric P. Palkovacs; Erika G. Schielke; Stanley I. Dodson

Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.


Ecology | 2009

Experimental evidence that phenotypic divergence in predators drives community divergence in prey

Eric P. Palkovacs; David M. Post

Studies of adaptive divergence have traditionally focused on the ecological causes of trait diversification, while the ecological consequences of phenotypic divergence remain relatively unexplored. Divergence in predator foraging traits, in particular, has the potential to impact the structure and dynamics of ecological communities. To examine the effects of predator trait divergence on prey communities, we exposed zooplankton communities in lake mesocosms to predation from either anadromous or landlocked (freshwater resident) alewives, which have undergone recent and rapid phenotypic differentiation in foraging traits (gape width, gill raker spacing, and prey size-selectivity). Anadromous alewives, which exploit large prey items, significantly reduced the mean body size, total biomass, species richness, and diversity of crustacean zooplankton relative to landlocked alewives, which exploit smaller prey. The zooplankton responses observed in this experiment are consistent with patterns observed in lakes. This study provides direct evidence that phenotypic divergence in predators, even in its early stages, can play a critical role in determining prey community structure.


Molecular Ecology | 2007

Independent evolutionary origins of landlocked alewife populations and rapid parallel evolution of phenotypic traits.

Eric P. Palkovacs; Kirstin Dion; David M. Post; Adalgisa Caccone

Alewife, Alosa pseudoharengus, populations occur in two discrete life‐history variants, an anadromous form and a landlocked (freshwater resident) form. Landlocked populations display a consistent pattern of life‐history divergence from anadromous populations, including earlier age at maturity, smaller adult body size, and reduced fecundity. In Connecticut (USA), dams constructed on coastal streams separate anadromous spawning runs from lake‐resident landlocked populations. Here, we used sequence data from the mtDNA control region and allele frequency data from five microsatellite loci to ask whether coastal Connecticut landlocked alewife populations are independently evolved from anadromous populations or whether they share a common freshwater ancestor. We then used microsatellite data to estimate the timing of the divergence between anadromous and landlocked populations. Finally, we examined anadromous and landlocked populations for divergence in foraging morphology and used divergence time estimates to calculate the rate of evolution for foraging traits. Our results indicate that landlocked populations have evolved multiple times independently. Tests of population divergence and estimates of gene flow show that landlocked populations are genetically isolated, whereas anadromous populations exchange genes. These results support a ‘phylogenetic raceme’ model of landlocked alewife divergence, with anadromous populations forming an ancestral core from which landlocked populations independently diverged. Divergence time estimates suggest that landlocked populations diverged from a common anadromous ancestor no longer than 5000 years ago and perhaps as recently as 300 years ago, depending on the microsatellite mutation rate assumed. Examination of foraging traits reveals landlocked populations to have significantly narrower gapes and smaller gill raker spacings than anadromous populations, suggesting that they are adapted to foraging on smaller prey items. Estimates of evolutionary rates (in haldanes) indicate rapid evolution of foraging traits, possibly in response to changes in available resources.


Evolutionary Applications | 2012

Fates beyond traits: ecological consequences of human-induced trait change

Eric P. Palkovacs; Michael T. Kinnison; Cristián Correa; Christopher M. Dalton; Andrew P. Hendry

Human‐induced trait change has been documented in freshwater, marine, and terrestrial ecosystems worldwide. These trait changes are driven by phenotypic plasticity and contemporary evolution. While efforts to manage human‐induced trait change are beginning to receive some attention, managing its ecological consequences has received virtually none. Recent work suggests that contemporary trait change can have important effects on the dynamics of populations, communities, and ecosystems. Therefore, trait changes caused by human activity may be shaping ecological dynamics on a global scale. We present evidence for important ecological effects associated with human‐induced trait change in a variety of study systems. These effects can occur over large spatial scales and impact system‐wide processes such as trophic cascades. Importantly, the magnitude of these effects can be on par with those of traditional ecological drivers such as species presence. However, phenotypic change is not always an agent of ecological change; it can also buffer ecosystems against change. Determining the conditions under which phenotypic change may promote vs prevent ecological change should be a top research priority.


Molecular Ecology | 2014

Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species

Daniel J. Hasselman; Emily E. Argo; Meghan C. McBride; Paul Bentzen; Thomas Schultz; Anna A. Perez-Umphrey; Eric P. Palkovacs

Most evidence for hybrid swarm formation stemming from anthropogenic habitat disturbance comes from the breakdown of reproductive isolation between incipient species, or introgression between allopatric species following secondary contact. Human impacts on hybridization between divergent species that naturally occur in sympatry have received considerably less attention. Theory predicts that reinforcement should act to preserve reproductive isolation under such circumstances, potentially making reproductive barriers resistant to human habitat alteration. Using 15 microsatellites, we examined hybridization between sympatric populations of alewife (Alosa pseudoharengus) and blueback herring (A. aestivalis) to test whether the frequency of hybridization and pattern of introgression have been impacted by the construction of a dam that isolated formerly anadromous populations of both species in a landlocked freshwater reservoir. The frequency of hybridization and pattern of introgression differed markedly between anadromous and landlocked populations. The rangewide frequency of hybridization among anadromous populations was generally 0–8%, whereas all landlocked individuals were hybrids. Although neutral introgression was observed among anadromous hybrids, directional introgression leading to increased prevalence of alewife genotypes was detected among landlocked hybrids. We demonstrate that habitat alteration can lead to hybrid swarm formation between divergent species that naturally occur sympatrically, and provide empirical evidence that reinforcement does not always sustain reproductive isolation under such circumstances.


Molecular Phylogenetics and Evolution | 2002

The evolutionary origin of Indian Ocean tortoises (Dipsochelys)

Eric P. Palkovacs; Justin Gerlach; Adalgisa Caccone

Today, the only surviving wild population of giant tortoises in the Indian Ocean occurs on the island of Aldabra. However, giant tortoises once inhabited islands throughout the western Indian Ocean. Madagascar, Africa, and India have all been suggested as possible sources of colonization for these islands. To address the origin of Indian Ocean tortoises (Dipsochelys, formerly Geochelone gigantea), we sequenced the 12S, 16S, and cyt b genes of the mitochondrial DNA. Our phylogenetic analysis shows Dipsochelys to be embedded within the Malagasy lineage, providing evidence that Indian Ocean giant tortoises are derived from a common Malagasy ancestor. This result points to Madagascar as the source of colonization for western Indian Ocean islands by giant tortoises. Tortoises are known to survive long oceanic voyages by floating with ocean currents, and thus, currents flowing northward towards the Aldabra archipelago from the east coast of Madagascar would have provided means for the colonization of western Indian Ocean islands. Additionally, we found an accelerated rate of sequence evolution in the two Malagasy Pyxis species examined. This finding supports previous theories that shorter generation time and smaller body size are related to an increase in mitochondrial DNA substitution rate in vertebrates.


PLOS ONE | 2011

Eco-evolutionary trophic dynamics: loss of top predators drives trophic evolution and ecology of prey.

Eric P. Palkovacs; Ben A. Wasserman; Michael T. Kinnison

Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.


Evolutionary Applications | 2014

Combining genetic and demographic information to prioritize conservation efforts for anadromous alewife and blueback herring

Eric P. Palkovacs; Daniel J. Hasselman; Emily E. Argo; Stephen R. Gephard; Karin E. Limburg; David M. Post; Thomas Schultz; Theodore V. Willis

A major challenge in conservation biology is the need to broadly prioritize conservation efforts when demographic data are limited. One method to address this challenge is to use population genetic data to define groups of populations linked by migration and then use demographic information from monitored populations to draw inferences about the status of unmonitored populations within those groups. We applied this method to anadromous alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), species for which long‐term demographic data are limited. Recent decades have seen dramatic declines in these species, which are an important ecological component of coastal ecosystems and once represented an important fishery resource. Results show that most populations comprise genetically distinguishable units, which are nested geographically within genetically distinct clusters or stocks. We identified three distinct stocks in alewife and four stocks in blueback herring. Analysis of available time series data for spawning adult abundance and body size indicate declines across the US ranges of both species, with the most severe declines having occurred for populations belonging to the Southern New England and the Mid‐Atlantic Stocks. While all alewife and blueback herring populations deserve conservation attention, those belonging to these genetic stocks warrant the highest conservation prioritization.


Molecular Ecology | 2003

Are the native giant tortoises from the Seychelles really extinct? A genetic perspective based on mtDNA and microsatellite data.

Eric P. Palkovacs; Monique Marschner; Claudio Ciofi; Justin Gerlach; Adalgisa Caccone

The extinction of the giant tortoises of the Seychelles Archipelago has long been suspected but is not beyond doubt. A recent morphological study of the giant tortoises of the western Indian Ocean concluded that specimens of two native Seychelles species survive in captivity today alongside giant tortoises of Aldabra, which are numerous in zoos as well as in the wild. This claim has been controversial because some of the morphological characters used to identify these species, several measures of carapace morphology, are reputed to be quite sensitive to captive conditions. Nonetheless, the potential survival of giant tortoise species previously thought extinct presents an exciting scenario for conservation. We used mitochondrial DNA sequences and nuclear microsatellites to examine the validity of the rediscovered species of Seychelles giant tortoises. Our results indicate that the morphotypes suspected to represent Seychelles species do not show levels of variation and genetic structuring consistent with long periods of reproductive isolation. We found no variation in the mitochondrial control region among 55 individuals examined and no genetic structuring in eight microsatellite loci, pointing to the survival of just a single lineage of Indian Ocean tortoises.


New Phytologist | 2009

From genes to ecosystems: an emerging synthesis of eco‐evolutionary dynamics

Joseph K. Bailey; Andrew P. Hendry; Michael T. Kinnison; David M. Post; Eric P. Palkovacs; Fanie Pelletier; Luke J. Harmon; Jennifer A. Schweitzer

A synthesis is underway between ecology and evolution, partly brought about by the realization that evolutionary change can take place on ecological timescales (Hairston et al., 2005; Whitham et al., 2006; Carroll et al., 2007). This synthesis attempts to understand the dynamic interplay of ecological and evolutionary processes that results from natural or anthropogenic selective forces (Lankau & Strauss, 2007). Moreover, this synthesis represents an integration of several ‘genes to ecosystems’ approaches, including ‘ecological stochiometry’, ‘community genetics’ (Whitham et al., 2006) and ‘niche construction’. United under the framework of ‘eco-evolutionary dynamics’, these ideas seek to link genetic and phenotypic variation to population dynamics, biodiversity and ecosystem function, and place these disciplines in a dynamic evolutionary framework (i.e. understanding the ecological consequences of evolutionary processes and the evolutionary consequences of ecological interactions). This is not an easy endeavor because any such synthesis needs to be broadly multidisciplinary and integrative (Whitham et al., 2006). And yet the potential pay offs are large given that genetic variation across plant and animal systems can have extended consequences at the population, community and ecosystem levels. These consequences can come in the form of the vital rates of survival, reproduction and migration, as well as arthropod and aquatic macroinvertebrate diversity, soil microbial communities, trophic interactions, carbon storage, soil nitrogen availability, dissolved organic nitrogen and production of primary producers (Whitham et al., 2006; Bailey et al., 2009; Ezard et al., 2009; Harmon et al., 2009; Johnson et al., 2009; Palkovacs et al., 2009; Post & Palkovacs, 2009). The effects of genetic or phenotypic variation are not limited to single systems or to ecologically important species (i.e. keystone species, dominant species, foundation species, ecosystem engineers), although these are excellent places to start looking. Instead, genetic variation seems to have effects that are broadly distributed across plant and animal systems - and these effects can be similar in magnitude to those of nonevolutionary ecological variables, such as climate, species invasion and habitat quality (Hairston et al., 2005; Bailey et al., 2009; Ezard et al., 2009; Palkovacs et al., 2009; Post & Palkovacs, 2009).

Collaboration


Dive into the Eric P. Palkovacs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge