Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric P. Schmidt is active.

Publication


Featured researches published by Eric P. Schmidt.


Nature Medicine | 2012

The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis

Eric P. Schmidt; Yimu Yang; William J. Janssen; Aneta Gandjeva; Mario J. Perez; Lea Barthel; Rachel L. Zemans; Joel Bowman; Dan Koyanagi; Zulma X. Yunt; Lynelle P. Smith; Sara S Cheng; Katherine H. Overdier; Kathy Thompson; Mark W. Geraci; Ivor S. Douglas; David B. Pearse; Rubin M. Tuder

Sepsis, a systemic inflammatory response to infection, commonly progresses to acute lung injury (ALI), an inflammatory lung disease with high morbidity. We postulated that sepsis-associated ALI is initiated by degradation of the pulmonary endothelial glycocalyx, leading to neutrophil adherence and inflammation. Using intravital microscopy, we found that endotoxemia in mice rapidly induced pulmonary microvascular glycocalyx degradation via tumor necrosis factor-α (TNF-α)-dependent mechanisms. Glycocalyx degradation involved the specific loss of heparan sulfate and coincided with activation of endothelial heparanase, a TNF-α–responsive, heparan sulfate–specific glucuronidase. Glycocalyx degradation increased the availability of endothelial surface adhesion molecules to circulating microspheres and contributed to neutrophil adhesion. Heparanase inhibition prevented endotoxemia-associated glycocalyx loss and neutrophil adhesion and, accordingly, attenuated sepsis-induced ALI and mortality in mice. These findings are potentially relevant to human disease, as sepsis-associated respiratory failure in humans was associated with higher plasma heparan sulfate degradation activity; moreover, heparanase content was higher in human lung biopsies showing diffuse alveolar damage than in normal human lung tissue.


Journal of Biological Chemistry | 2014

The Circulating Glycosaminoglycan Signature of Respiratory Failure in Critically Ill Adults

Eric P. Schmidt; Guoyun Li; Lingyun Li; Li Fu; Yimu Yang; Katherine H. Overdier; Ivor S. Douglas; Robert J. Linhardt

Background: Endothelial glycocalyx degradation contributes to the pathogenesis of critical illness. Results: Mechanically ventilated subjects exhibited plasma glycocalyx breakdown signatures (glycosaminoglycan fragments) characteristic of direct versus indirect etiologies of respiratory failure. Conclusion: Circulating glycosaminoglycans provide insight into respiratory failure pathophysiology. Significance: This is the first study to characterize circulating glycosaminoglycans during critical illness, offering insight into the mechanisms underlying respiratory failure. Systemic inflammatory illnesses (such as sepsis) are marked by degradation of the endothelial glycocalyx, a layer of glycosaminoglycans (including heparan sulfate, chondroitin sulfate, and hyaluronic acid) lining the vascular lumen. We hypothesized that different pathophysiologic insults would produce characteristic patterns of released glycocalyx fragments. We collected plasma from healthy donors as well as from subjects with respiratory failure due to altered mental status (intoxication, ischemic brain injury), indirect lung injury (non-pulmonary sepsis, pancreatitis), or direct lung injury (aspiration, pneumonia). Mass spectrometry was employed to determine the quantity and sulfation patterns of circulating glycosaminoglycans. We found that circulating heparan sulfate fragments were significantly (23-fold) elevated in patients with indirect lung injury, while circulating hyaluronic acid concentrations were elevated (32-fold) in patients with direct lung injury. N-Sulfation and tri-sulfation of heparan disaccharides were significantly increased in patients with indirect lung injury. Chondroitin disaccharide sulfation was suppressed in all groups with respiratory failure. Plasma heparan sulfate concentrations directly correlated with intensive care unit length of stay. Serial plasma measurements performed in select patients revealed that circulating highly sulfated heparan fragments persisted for greater than 3 days after the onset of respiratory failure. Our findings demonstrate that circulating glycosaminoglycans are elevated in patterns characteristic of the etiology of respiratory failure and may serve as diagnostic and/or prognostic biomarkers of critical illness.


Pulmonary circulation | 2013

Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling

Kelsey Chow; Joshua P. Fessel; KaoriIhida-Stansbury; Eric P. Schmidt; Christa Gaskill; Diego F. Alvarez; Brian B. Graham; David G. Harrison; David H. Wagner; Eva Nozik-Grayck; James West; Dwight J. Klemm; Susan M. Majka

Pulmonary vascular remodeling and oxidative stress are common to many adult lung diseases. However, little is known about the relevance of lung mesenchymal stem cells (MSCs) in these processes. We tested the hypothesis that dysfunctional lung MSCs directly participate in remodeling of the microcirculation. We employed a genetic model to deplete extracellular superoxide dismutase (EC-SOD) in lung MSCs coupled with lineage tracing analysis. We crossed floxpsod3 and mT/mG reporter mice to a strain expressing Cre recombinase under the control of the ABCG2 promoter. We demonstrated In vivo that depletion of EC-SOD in lung MSCs resulted in their contribution to microvascular remodeling in the smooth muscle actin positive layer. We further characterized lung MSCs to be multipotent vascular precursors, capable of myofibroblast, endothelial and pericyte differentiation in vitro. EC-SOD deficiency in cultured lung MSCs accelerated proliferation and apoptosis, restricted colony-forming ability, multilineage differentiation potential and promoted the transition to a contractile phenotype. Further studies correlated cell dysfunction to alterations in canonical Wnt/β-catenin signaling, which were more evident under conditions of oxidative stress. Our data establish that lung MSCs are a multipotent vascular precursor population, a population which has the capacity to participate in vascular remodeling and their function is likely regulated in part by the Wnt/β-catenin signaling pathway. These studies highlight an important role for microenviromental regulation of multipotent MSC function as well as their potential to contribute to tissue remodeling.


Physiology | 2011

On, Around, and Through: Neutrophil-Endothelial Interactions in Innate Immunity

Eric P. Schmidt; Warren L. Lee; Rachel L. Zemans; Cory M. Yamashita; Gregory P. Downey

This manuscript will review our current understanding of neutrophilic polymorphonuclear leukocyte (neutrophil) interactions with the endothelium during immune and inflammatory responses, focusing on the molecular mechanisms regulating neutrophil adhesion to and migration through the endothelium in response to infection or tissue injury. This is a complex and dynamic area of research and one that has been the topic of several recent comprehensive reviews to which the interested reader is referred (64, 118, 131). By design, this review will begin with a brief review of some basic aspects of neutrophil biology and endothelial adhesion to provide a foundation. The remainder of the review will focus on selected areas of this complex field, specifically the role of the endothelial glycocalyx in regulating neutrophil adhesion and the mechanisms and consequences of migration of neutrophils between (paracellular) and through (transcellular) endothelial cells during egress from the vasculature.


Tissue barriers | 2013

The endothelial glycocalyx

Yimu Yang; Eric P. Schmidt

Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation.


PLOS ONE | 2013

Acute lung injury and acute kidney injury are established by four hours in experimental sepsis and are improved with pre, but not post, sepsis administration of TNF-α antibodies.

Rhea Bhargava; Christopher Altmann; Ana Andres-Hernando; Ryan G. Webb; Kayo Okamura; Yimu Yang; Sandor Falk; Eric P. Schmidt; Sarah Faubel

Introduction Acute kidney injury (AKI) and acute lung injury (ALI) are serious complications of sepsis. AKI is often viewed as a late complication of sepsis. Notably, the onset of AKI relative to ALI is unclear as routine measures of kidney function (BUN and creatinine) are insensitive and increase late. In this study, we hypothesized that AKI and ALI would occur simultaneously due to a shared pathophysiology (i.e., TNF-α mediated systemic inflammatory response syndrome [SIRS]), but that sensitive markers of kidney function would be required to identify AKI. Methods Sepsis was induced in adult male C57B/6 mice with 5 different one time doses of intraperitoneal (IP) endotoxin (LPS) (0.00001, 0.0001, 0.001, 0.01, or 0.25 mg) or cecal ligation and puncture (CLP). SIRS was assessed by serum proinflammatory cytokines (TNF-α, IL-1β, CXCL1, IL-6), ALI was assessed by lung inflammation (lung myeloperoxidase [MPO] activity), and AKI was assessed by serum creatinine, BUN, and glomerular filtration rate (GFR) (by FITC-labeled inulin clearance) at 4 hours. 20 µgs of TNF-α antibody (Ab) or vehicle were injected IP 2 hours before or 2 hours after IP LPS. Results Serum cytokines increased with all 5 doses of LPS; AKI and ALI were detected within 4 hours of IP LPS or CLP, using sensitive markers of GFR and lung inflammation, respectively. Notably, creatinine did not increase with any dose; BUN increased with 0.01 and 0.25 mg. Remarkably, GFR was reduced 50% in the 0.001 mg LPS dose, demonstrating that dramatic loss of kidney function can occur in sepsis without a change in BUN or creatinine. Prophylactic TNF-α Ab reduced serum cytokines, lung MPO activity, and BUN; however, post-sepsis administration had no effect. Conclusions ALI and AKI occur together early in the course of sepsis and TNF-α plays a role in the early pathogenesis of both.


Physiological Reports | 2013

Heparanase mediates renal dysfunction during early sepsis in mice

Melissa Lygizos; Yimu Yang; Christopher Altmann; Kayo Okamura; Ana Andres Hernando; Mario J. Perez; Lynelle P. Smith; Daniel E. Koyanagi; Aneta Gandjeva; Rhea Bhargava; Rubin M. Tuder; Sarah Faubel; Eric P. Schmidt

Heparanase, a heparan sulfate‐specific glucuronidase, mediates the onset of pulmonary neutrophil adhesion and inflammatory lung injury during early sepsis. We hypothesized that glomerular heparanase is similarly activated during sepsis and contributes to septic acute kidney injury (AKI). We induced polymicrobial sepsis in mice using cecal ligation and puncture (CLP) in the presence or absence of competitive heparanase inhibitors (heparin or nonanticoagulant N‐desulfated re‐N‐acetylated heparin [NAH]). Four hours after surgery, we collected serum and urine for measurement of renal function and systemic inflammation, invasively determined systemic hemodynamics, harvested kidneys for histology/protein/mRNA, and/or measured glomerular filtration by inulin clearance. CLP‐treated mice demonstrated early activation of glomerular heparanase with coincident loss of glomerular filtration, as indicated by a >twofold increase in blood urea nitrogen (BUN) and a >50% decrease in inulin clearance (P < 0.05) in comparison to sham mice. Administration of heparanase inhibitors 2 h prior to CLP attenuated sepsis‐induced loss of glomerular filtration rate, demonstrating that heparanase activation contributes to early septic renal dysfunction. Glomerular heparanase activation was not associated with renal neutrophil influx or altered vascular permeability, in marked contrast to previously described effects of pulmonary heparanase on neutrophilic lung injury during sepsis. CLP induction of renal inflammatory gene (IL‐6, TNF‐α, IL‐1β) expression was attenuated by NAH pretreatment. While serum inflammatory indices (KC, IL‐6, TNF‐α, IL‐1β) were not impacted by NAH pretreatment, heparanase inhibition attenuated the CLP‐induced increase in serum IL‐10. These findings demonstrate that glomerular heparanase is active during sepsis and contributes to septic renal dysfunction via mechanisms disparate from heparanase‐mediated lung injury.


American Journal of Respiratory Cell and Molecular Biology | 2013

Neutrophil Intercellular Communication in Acute Lung Injury: Emerging Roles of Microparticles and Gap Junctions

Viola Dengler; Gregory P. Downey; Rubin M. Tuder; Holger K. Eltzschig; Eric P. Schmidt

A hallmark of acute inflammation involves the recruitment of polymorphonuclear leukocytes (neutrophils) to infected or injured tissues. The processes underlying this recruitment are complex, and include multiple mechanisms of intercellular communication between neutrophils and the inflamed tissue. In recent studies of the systemic and pulmonary vasculature, interest has increased in novel forms of intercellular communication, such as microparticle exchange and gap junctional intercellular communication. To understand the roles of these novel forms of communication in the onset, progression, and resolution of inflammatory lung injury (such as acute respiratory distress syndrome), we review the literature concerning the contributions of microparticle exchange and gap junctional intercellular communication to neutrophil-alveolar crosstalk during pulmonary inflammation. By focusing on these cell-cell communications, we aim to demonstrate significant gaps of knowledge and identify areas of considerable need for further investigations of the processes of acute lung inflammation.


American Journal of Respiratory Cell and Molecular Biology | 2012

Eph-A2 Promotes Permeability and Inflammatory Responses to Bleomycin-Induced Lung Injury

Todd C. Carpenter; William Schroeder; Kurt R. Stenmark; Eric P. Schmidt

Stimulation by the ephrin-A1 ligand of the EphA2 receptor increases endothelial permeability. Lung injury increases the expression of EphA2, but the role of EphA2 in such injury is not well understood. To determine whether EphA2 contributes to changes in permeability and inflammation in the injured lung, we studied wild-type (WT) and EphA2 knockout (KO) mice, using isolated, perfused lung (IPL) preparations and a model of bleomycin-induced lung injury. We also studied the response of endothelial cells to ephrin-A1. In the IPL preparations, ephrin-A1 increased the filtration coefficient in WT mice, but not in EphA2 KO mice, demonstrating that EphA2 regulates vascular permeability. In early bleomycin injury in WT mice, the expression of both EphA2 and ephrin-A1 increased. EphA2 KO animals were protected from lung injury, showing less water and alveolar protein in the lungs than WT mice, consistent with reduced permeability. Bleomycin caused less accumulation of lung leukocytes in EphA2 KO animals than in WT animals, suggesting that EphA2 regulates inflammation. To determine whether EphA2 deficiency alters the production of chemokines, CXCL1 and CCL2 in the lungs were measured. After bleomycin injury, EphA2 KO animals produced less CXCL1 and CCL2 than WT animals. Because NF-κβ mediates the production of chemokines, the effect of the ephrin-A1 ligand on the activation of NF-κβ and the expression of chemokines was measured in endothelial cells. Ephrin-a1 significantly increased NF-κβ nuclear translocation and the expression of chemokine mRNA. This study demonstrates that the expression of EphA2 increases in the injured lung, and not only contributes to changes in permeability, but also plays a previously unrecognized role in promoting inflammatory responses.


American Journal of Respiratory and Critical Care Medicine | 2015

The Causal Role of IL-4 and IL-13 in Schistosoma mansoni Pulmonary Hypertension

Rahul Kumar; Claudia Mickael; Jacob J. Chabon; Liya Gebreab; Alleluiah Rutebemberwa; Alexandra Rodriguez Garcia; Daniel E. Koyanagi; Linda Sanders; Aneta Gandjeva; Mark T. Kearns; Lea Barthel; William J. Janssen; Thais Mauad; Angela Bandeira; Eric P. Schmidt; Rubin M. Tuder; Brian B. Graham

RATIONALE The etiology of schistosomiasis-associated pulmonary arterial hypertension (PAH), a major cause of PAH worldwide, is poorly understood. Schistosoma mansoni exposure results in prototypical type-2 inflammation. Furthermore, transforming growth factor (TGF)-β signaling is required for experimental pulmonary hypertension (PH) caused by Schistosoma exposure. OBJECTIVES We hypothesized type-2 inflammation driven by IL-4 and IL-13 is necessary for Schistosoma-induced TGF-β-dependent vascular remodeling. METHODS Wild-type, IL-4(-/-), IL-13(-/-), and IL-4(-/-)IL-13(-/-) mice (C57BL6/J background) were intraperitoneally sensitized and intravenously challenged with S. mansoni eggs to induce experimental PH. Right ventricular catheterization was then performed, followed by quantitative analysis of the lung tissue. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH was also systematically analyzed. MEASUREMENTS AND MAIN RESULTS Mice with experimental Schistosoma-induced PH had evidence of increased IL-4 and IL-13 signaling. IL-4(-/-)IL-13(-/-) mice, but not single knockout IL-4(-/-) or IL-13(-/-) mice, were protected from Schistosoma-induced PH, with decreased right ventricular pressures, pulmonary vascular remodeling, and right ventricular hypertrophy. IL-4(-/-)IL-13(-/-) mice had less pulmonary vascular phospho-signal transducer and activator of transcription 6 (STAT6) and phospho-Smad2/3 activity, potentially caused by decreased TGF-β activation by macrophages. In vivo treatment with a STAT6 inhibitor and IL-4(-/-)IL-13(-/-) bone marrow transplantation also protected against Schistosoma-PH. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH had evidence of type-2 inflammation. CONCLUSIONS Combined IL-4 and IL-13 deficiency is required for protection against TGF-β-induced pulmonary vascular disease after Schistosoma exposure, and targeted inhibition of this pathway is a potential novel therapeutic approach for patients with schistosomiasis-associated PAH.

Collaboration


Dive into the Eric P. Schmidt's collaboration.

Top Co-Authors

Avatar

Yimu Yang

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rubin M. Tuder

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Robert J. Linhardt

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Mario J. Perez

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Sarah M. Haeger

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Fuming Zhang

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Ivor S. Douglas

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Katherine H. Overdier

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Aneta Gandjeva

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rachel L. Zemans

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge