Eric Plante
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Plante.
Circulation | 2004
Eric Plante; Dominic Lachance; Martin Gaudreau; Marie-Claude Drolet; Élise Roussel; Marie Arsenault; Jacques Couet
Background—Past studies have suggested that the adrenergic system becomes abnormally activated in chronic volume overload, such as in severe aortic valve regurgitation (AR). However, the effectiveness of agents directed against this adrenergic activation has never been adequately tested in chronic AR. We therefore tested the effects of metoprolol treatment on the left ventricular (LV) function and remodeling in severe chronic AR in rats. Methods and Results—Severe AR was created in adult male Wistar rats by retrograde puncture of the aortic leaflets under echocardiographic guidance. Two weeks later, some animals received metoprolol treatment (25 mg/kg) orally for 24 weeks, and some were left untreated. LV dimensions, ejection fraction, and filling parameters were evaluated by echocardiography. Hearts were harvested at 1, 2, 14, and 180 days for the evaluation of hypertrophy, &bgr;-adrenergic receptor status, and extracellular matrix remodeling. We found that metoprolol treatment prevented LV dilatation and preserved the ejection fraction and filling parameters compared with untreated animals. Metoprolol increased the expression of &bgr;1-adrenoreceptor mRNA and reduced G protein receptor kinase 2 levels. Collagen I and III mRNA levels were reduced. Cardiac myocyte hypertrophy was also prevented. Conclusions—In our experimental model of severe AR, metoprolol treatment had a significant beneficial global effect on LV remodeling and function. These results suggest that the adrenergic system is important in the development of volume-overload cardiomyopathy in AR and that adrenergic-blocking agents may play a role in the treatment of this disease.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Eric Plante; Dominic Lachance; Serge Champetier; Marie-Claude Drolet; Élise Roussel; Marie Arsenault; Jacques Couet
The objective of this study was to assess the long-term effects of beta-blockade on survival and left ventricular (LV) remodeling in rats with aortic valve regurgitation (AR). The pharmacological management of chronic AR remains controversial. No drug has been definitively proven to delay the need for valve replacement or to affect morbidity and/or mortality. Our group has reported that the adrenergic system is activated in an animal model of AR and that adrenergic blockade may help maintain normal LV function. The effects of prolonged treatment with a beta-blocker are unknown. Forty Wistar rats with severe AR were divided into 2 groups of 20 animals each and treated with metoprolol (Met, 25 mg.kg(-1).day(-1)) or left untreated for 1 yr. LV remodeling was evaluated by echocardiography. Survival was assessed by Kaplan-Meir curves. Hearts were harvested for tissue analysis. All Met-treated animals were alive after 6 mo vs. 70% of untreated animals. After 1 yr, 60% of Met-treated animals were alive vs. 35% of untreated animals (P = 0.028). All deaths, except one, were sudden. There were no differences in LV ejection fraction (all >50%) or LV dimensions. LV mass tended to be lower in the Met-treated group. There was less subendocardial fibrosis in this group, as well as lower LV filling pressures (LV end-diastolic pressure). beta-Adrenergic receptor ratio (beta(1)/beta(2)) was improved. One year of treatment with Met was well tolerated. Met improved 1-yr survival, minimized LV hypertrophy, improved LV filling pressures, decreased LV subendocardial fibrosis, and helped restore the beta-adrenergic receptor ratio.
Circulation-heart Failure | 2009
Dominic Lachance; Eric Plante; Andrée-Anne Bouchard-Thomassin; Serge Champetier; Élise Roussel; Marie-Claude Drolet; Marie Arsenault; Jacques Couet
Background—Exercise training has beneficial effects in patients with heart failure, although there is still no clear evidence that it may impact on their survival. There are no data regarding the effects of exercise in subjects with chronic left ventricular (LV) volume overload. Using a rat model of severe aortic valve regurgitation (AR), we studied the effects of long-term exercise training on survival, development of heart failure, and LV myocardial remodeling. Methods and Results—One hundred sixty male adult rats were divided in 3 groups: sham sedentary (n=40), AR sedentary (n=80), and AR trained (n=40). Training consisted in treadmill running for up to 30 minutes, 5 times per week for 9 months, at a maximal speed of 20 m/minute. All sham-operated animals survived the entire course of the protocol. After 9 months, 65% of trained animals were alive compared with 46% of sedentary ones (P=0.05). Ejection fractions remained in the normal range (all above 60%) and LV masses between AR groups were similar. There was significantly less LV fibrosis in the trained group and lower LV filling pressures and improved echocardiographic diastolic parameters. Heart rate variability was also improved by exercise. Conclusion—Our data show that moderate endurance training is safe, does not increase the rate of developing heart failure, and most importantly, improves survival in this animal model of chronic LV volume overload. Exercise improved LV diastolic function, heart rate variability, and reduced myocardial fibrosis.
Cardiovascular Ultrasound | 2005
Eric Plante; Dominic Lachance; Marie-Claude Drolet; Élise Roussel; Jacques Couet; Marie Arsenault
BackgroundDobutamine stress echocardiography is used to investigate a wide variety of heart diseases in humans. Dobutamine stress echocardiography has also been used in animal models of heart disease despite the facts that the normal response of healthy rat hearts to this type of pharmacological stress testing is unknown. This study was performed to assess this normal response.Methods15 normal adult male Wistar rats were evaluated. Increasing doses of dobutamine were infused intravenously under continuous imaging of the heart by a 12 MHz ultrasound probe.ResultsDobutamine stress echocardiography reduced gradually LV diastolic and systolic dimensions. Ejection fraction increased by a mean of +24% vs. baseline. Heart rate increased progressively without reaching a plateau. Changes in LV dimensions and ejection fraction reached a plateau after a mean of 4 minutes at a constant infusion rate.ConclusionDSE can be easily performed in rats. The normal response is an increase in heart rate and ejection fraction and a decrease in LV dimensions. A plateau in echocardiographic measurements is obtained after 4 minutes of a constant infusion rate in most animals.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Serge Champetier; Azadeh Bojmehrani; Jonathan Beaudoin; Dominic Lachance; Eric Plante; Élise Roussel; Jacques Couet; Marie Arsenault
Aortic valve regurgitation (AR) imposes a severe volume overload to the left ventricle (LV), which results in dilation, eccentric hypertrophy, and eventually loss of function. Little is known about the impact of AR on LV gene expression. We, therefore, conducted a gene expression profiling study in the LV of rats with acute and severe AR. We identified 64 genes that were specifically upregulated and 29 that were downregulated out of 21,910 genes after 2 wk. Of the upregulated genes, a good proportion was related to the extracellular matrix. We subsequently studied a subset of 19 genes by quantitative RT-PCR (qRT-PCR) to see if the modulation seen in the LV after 2 wk persisted in the chronic phase (after 6 and 12 mo) and found that it did persist. Knowing that the adrenergic and renin-angiotensin systems are overactivated in our animal model, we were interested to see if blocking those systems using metoprolol (25 mg.kg(-1).day(-1)) and captopril (100 mg.kg(-1).day(-1)) would alter the expression of some upregulated LV genes in AR rats after 6 mo. By qRT-PCR, we observed that upregulations of LV mRNA levels encoding for procollagens type I and III, fibronectin, atrial natriuretic peptide, transforming growth factor-beta(2), and connective tissue growth factor were totally or partially reversed by this treatment. These observations provide a molecular rationale for a medical strategy aiming these systems in the medical treatment of AR and expand the paradigm in the study of this form of LV volume overload.
Circulation-heart Failure | 2009
Eric Plante; Dominic Lachance; Jonathan Beaudoin; Serge Champetier; Élise Roussel; Marie Arsenault; Jacques Couet
Background—Aortic regurgitation (AR) is a disease of chronic left ventricular (LV) volume overload. Over time, AR will lead to LV dilatation, hypertrophy, and loss of function. There is currently no medical treatment proven effective to slow the evolution of this cardiomyopathy. Vasodilators were once thought to have protective effects, but recent publications have cast some doubts about their effectiveness. We hypothesized that drugs targeting the renin-angiotensin system should be more effective than those having no direct effect on the renin-angiotensin system. Methods and Results—We designed a protocol comparing the effects of 3 vasodilators in a rat AR model (n=9 to 11 animals per group). The effects of a 6-month treatment of (1) nifedipine, (2) captopril, or (3) losartan were compared in male AR rats. Sham-operated and untreated AR animals were used as controls. Nifedipine-treated animals displayed hemodynamics, LV dilatation, hypertrophy, and loss of function similar to those of the untreated group. Both captopril and losartan were effective in improving hemodynamics, slow LV dilatation, hypertrophy, and dysfunction. Gene expression analysis confirmed the lack of effects of the nifedipine treatment at the molecular level. Conclusions—Using an animal model of severe AR, we found that vasodilators targeting the renin-angiotensin system were effective to slow the development of LV remodeling and to preserve LV function. As recently shown in the most recent human clinical trial, nifedipine was totally ineffective. Targeting the renin-angiotensin system seems a promising avenue in the treatment of this disease, and clinical trials should be carefully designed to re-evaluate the effectiveness of angiotensin I–converting enzyme inhibitors or angiotensin II receptor blockers in AR.
Cardiovascular Ultrasound | 2004
Marie-Claude Drolet; Eric Plante; Bruno Battistini; Jacques Couet; Marie Arsenault
BackgroundEndothelial function in hypercholesterolemic rabbits is usually evaluated ex vivo on isolated aortic rings. In vivo evaluation requires invasive imaging procedures that cannot be repeated serially.AimWe evaluated a non-invasive ultrasound technique to assess early endothelial function in rabbits and compare data with ex vivo measurements.MethodsTwenty-four rabbits (fed with a cholesterol diet (0.5%) for 2 to 8 weeks) were given progressive infusions of acetylcholine (0.05–0.5 μg/kg/min) and their endothelial function was assessed in vivo by transcutaneous vascular ultrasound of the abdominal aorta. Ex vivo endothelial function was evaluated on isolated aortic rings and compared to in vivo data.ResultsSignificant endothelial dysfunction was demonstrated in hypercholesterolemic animals as early as 2 weeks after beginning the cholesterol diet (aortic cross-sectional area variation: -2.9% vs. +4% for controls, p < 0.05). Unexpectedly, response to acetylcholine at 8 weeks was more variable. Endothelial function improved in 5 rabbits while 2 rabbits regained a normal endothelial function. These data corroborated well with ex vivo results.ConclusionEndothelial function can be evaluated non-invasively in vivo by transcutaneous vascular ultrasound of the abdominal aorta in the rabbit and results correlate well with ex vivo data.
Medicine and Science in Sports and Exercise | 2009
Dominic Lachance; Serge Champetier; Eric Plante; Andrée-Anne Bouchard-Thomassin; Élise Roussel; Jacques Couet; Marie Arsenault
BACKGROUND Aortic valve regurgitation (AR) imposes a pathologic volume overload to the left ventricle (LV), whereas aerobic exercise causes physiologic volume overloading. The impact of combining both LV volume overloads (pathologic and physiologic) is unknown. Considering the known beneficial effects of aerobic training on the cardiovascular system, we hypothesized that the positive effects would outweigh the negative ones and that exercise would improve the tolerance of the LV to AR. METHODS Forty female adult Wistar rats were randomly divided in the following groups: 1) sham sedentary (SS), 2) sham trained (ST), 3) AR sedentary (ARS), and 4) AR trained (ART). Training consisted in treadmill running for 30 min five times per week at 20 m x s(-1) for 24 wk. In vivo follow-up was made by echocardiography and invasive intracardiac pressure measurements. Hearts were harvested for tissue analysis. RESULTS Echocardiography revealed less LV dilation and hypertrophy in ART versus ARS as well as improved myocardial performance index. LV ejection fractions remained similar and within normal range in ART versus ARS. Invasive cardiac pressures yielded improved dP/dt- in ART versus ARS but similar dP/dt+. beta(1)-Adrenergic receptor mRNA expression was improved in the ART group versus ARS. CONCLUSION Our data suggest that a moderate aerobic exercise program helps minimize LV dilation and hypertrophy and improves diastolic cardiac performance in heart submitted to chronic volume overload due to severe aortic valve regurgitation in this animal model.
Journal of Cardiac Failure | 2003
Eric Plante; Jacques Couet; Martin Gaudreau; Marie-Pierre Dumas; Marie-Claude Drolet; Marie Arsenault
Journal of The American Society of Echocardiography | 2006
Eric Plante; Dominic Lachance; Élise Roussel; Marie-Claude Drolet; Marie Arsenault; Jacques Couet