Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Prinssen is active.

Publication


Featured researches published by Eric Prinssen.


Journal of Pharmacology and Experimental Therapeutics | 2005

Fenobam: A Clinically Validated Nonbenzodiazepine Anxiolytic Is a Potent, Selective, and Noncompetitive mGlu5 Receptor Antagonist with Inverse Agonist Activity

Richard Hugh Philip Porter; Georg Jaeschke; Will Spooren; Theresa M. Ballard; Bernd Büttelmann; Sabine Kolczewski; Jens-Uwe Peters; Eric Prinssen; Jürgen Wichmann; Eric Vieira; Andreas Mühlemann; Silvia Gatti; Vincent Mutel; Pari Malherbe

Fenobam [N-(3-chlorophenyl)-N′-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] is an atypical anxiolytic agent with unknown molecular target that has previously been demonstrated both in rodents and human to exert anxiolytic activity. Here, we report that fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist acting at an allosteric modulatory site shared with 2-methyl-6-phenylethynyl-pyridine (MPEP), the protypical selective mGlu5 receptor antagonist. Fenobam inhibited quisqualate-evoked intracellular calcium response mediated by human mGlu5 receptor with IC50 = 58 ± 2 nM. It acted in a noncompetitive manner, similar to MPEP and demonstrated inverse agonist properties, blocking 66% of the mGlu5 receptor basal activity (in an over expressed cell line) with an IC50 = 84 ± 13 nM. [3H]Fenobam bound to rat and human recombinant receptors with Kd values of 54 ± 6 and 31 ± 4 nM, respectively. MPEP inhibited [3H]fenobam binding to human mGlu5 receptors with a Ki value of 6.7 ± 0.7 nM, indicating a common binding site shared by both allosteric antagonists. Fenobam exhibits anxiolytic activity in the stress-induced hyperthermia model, Vogel conflict test, Geller-Seifter conflict test, and conditioned emotional response with a minimum effective dose of 10 to 30 mg/kg p.o. Furthermore, fenobam is devoid of GABAergic activity, confirming previous reports that fenobam acts by a mechanism distinct from benzodiazepines. The non-GABAergic activity of fenobam, coupled with its robust anxiolytic activity and reported efficacy in human in a double blind placebo-controlled trial, supports the potential of developing mGlu5 receptor antagonists with an improved therapeutic window over benzodiazepines as novel anxiolytic agents.


Nature Reviews Neurology | 2014

Maternal immune activation and abnormal brain development across CNS disorders

Irene Knuesel; Laurie Chicha; Markus Britschgi; Scott A. Schobel; Michael Bodmer; Jessica A. Hellings; Stephen Toovey; Eric Prinssen

Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.


Drug Safety | 2008

Assessment of neuropsychiatric adverse events in influenza patients treated with oseltamivir: a comprehensive review.

Stephen Toovey; Craig R. Rayner; Eric Prinssen; Tom Chu; Barbara Donner; Bharat Thakrar; Regina Dutkowski; Gerhard Hoffmann; Alexander Breidenbach; Lothar Lindemann; Ellen Carey; Lauren Boak; Ronald Gieschke; Susan Sacks; Jonathan Solsky; Ian Small; David Reddy

After reports from Japan of neuropsychiatric adverse events (NPAEs) in children taking oseltamivir phosphate (hereafter referred to as oseltamivir [Tamiflu®; F. Hoffmann-La Roche Ltd, Basel, Switzerland]) during and after the 2004–5 influenza season, Roche explored possible reasons for the increase in reporting rate and presented regular updates to the US FDA and other regulatory authorities. This review summarizes the results of a comprehensive assessment of the company’s own preclinical and clinical studies, post-marketing spontaneous adverse event reporting, epidemiological investigations utilizing health claims and medical records databases and an extensive review of the literature, with the aim of answering the following questions: (i) what the types and rates of neuropsychiatric abnormalities reported in patients with influenza are, and whether these differ in patients who have received oseltamivir compared with those who have not; (ii) what levels of oseltamivir and its active metabolite, oseltamivir carboxylate are achieved in the CNS; (iii) whether oseltamivir and oseltamivircarboxylate have pharmacological activity in the CNS; and (iv) whether there are genetic differences between Japanese and Caucasian patients that result in different levels of oseltamivir and/or oseltamivir carboxylate in the CNS, differences in their metabolism or differences in their pharmacological activity in the CNS.In total, 3051 spontaneous reports of NPAEs were received by Roche, involving 2466 patients who received oseltamivir between 1999 and 15 September 2007; 2772 (90.9%) events originated from Japan, 190 (6.2%) from the US and 89 (2.9%) from other countries. During this period, oseltamivir was prescribed to around 48 million people worldwide. Crude NPAE reporting rates (per 1 000 000 prescriptions) in children (aged ≤16 years) and adults, respectively, were 99 and 28 events in Japan and 19 and 8 in the US. NPAEs were more commonly reported in children (2218 events in 1808 children aged >16 years vs 833 in 658 adults) and generally occurred within 48 hours of the onset of influenza illness and initiation of treatment. After categorizing the reported events according to International Classification of Diseases (9th edition) codes, abnormal behaviour (1160 events, 38.0%) and delusions/perceptual disturbances (661 events, 21.7%) were the largest categories of events, and delirium or delirium-like events (as defined by the American Psychiatric Association) were very common in most categories.No difference in NPAE reporting rates between oseltamivir and placebo was found in phase III treatment studies (0.5% vs 0.6%). Analyses of US healthcare claims databases showed the risk of NPAEs in oseltamivir-treated patients (n =159 386) was no higher than those not receiving antivirals (n = 159 386). Analysis of medical records in the UK General Practice Research Database showed that the adjusted relative risk of NPAEs in influenza patients was significantly higher (1.75-fold) than in the general population. Based on literature reports, NPAEs in Japanese and Taiwanese children with influenza have occurred before the initiation of oseltamivir treatment; events were also similar to those occurring after the initiation of oseltamivir therapy.No clinically relevant differences in plasma pharmacokinetics of oseltamivir and its active metabolite oseltamivir carboxylate were noted between Japanese and Caucasian adults or children. Penetration into the CNS of both oseltamivir and oseltamivir carboxylate was low in Japanese and Caucasian adults (cerebrospinal fluid/plasma maximum concentration and area under the plasma concentration-time curve ratios of approximately 0.03), and the capacity for converting oseltamivir to oseltamivir carboxylate in rat and human brains was low. In animal autoradiography and pharmacokinetic studies, brain: plasma radioactivity ratios were generally 20% or lower. Animal studies showed no specific CNS/behavioural effects after administration of doses corresponding to ≥100 times the clinical dose. Oseltamivir or oseltamivir carboxylate did not interact with human neuraminidases or with 155 known molecular targets in radioligand binding and functional assays. A review of the information published to date on functional variations of genes relevant to oseltamivir pharmacokinetics and pharmacodynamics and simulated gene knock-out scenarios did not identify any plausible genetic explanations for the observed NPAEs.The available data do not suggest that the incidence of NPAEs in influenza patients receiving oseltamivir is higher than in those who do not, and no mechanism by which oseltamivir or oseltamivir carboxylate could cause or worsen such events could be identified.


Current Drug Targets | 2007

Nociceptin/Orphanin FQ Peptide Receptors: Pharmacology and Clinical Implications

Lih-Chu Chiou; Yan-Yu Liao; Pi-Chuan Fan; Ping-Hung Kuo; Chung Hsing Wang; C. Riemer; Eric Prinssen

The advance of functional genomics revealed the superfamily of G-protein coupled receptors (GPCRs). Hundreds of GPCRs have been cloned but many of them are orphan GPCRs with unidentified ligands. The first identified orphan GPCR is the opioid receptor like orphan receptor, ORL1. It was cloned in 1994 during the identification of opioid receptor subtypes and was de-orphanized in 1995 by the discovery of its endogenous ligand, nociceptin or orphanin FQ (N/OFQ). This receptor was renamed as N/OFQ peptide (NOP) receptor. Several selective ligands acting at NOP receptors or other anti-N/OFQ agents have been reported. These include N/OFQ-derived peptides acting as agonists (cyclo[Cys(10),Cys(14)]N/OFQ, [Arg(14), Lys(15)]N/OFQ, [pX]Phe(4)N/OFQ(1-13)-NH(2), UFP-102, [(pF)Phe(4),Aib(7), Aib(11),Arg(14),Lys(15)]N/OFQ-NH(2)) or antagonists (Phe(1)psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)-NH(2), [Nphe(1)]N/OFQ(1-13)-NH(2), UFP-101, [Nphe(1), (pF)Phe(4),Aib(7),Aib(11),Arg(14),Lys(15)]N/OFQ-NH(2)), hexapeptides, other peptide derivatives (peptide III-BTD, ZP-120, OS-461, OS-462, OS-500), non-peptide agonists (NNC 63-0532, Ro 64-6198, (+)-5a compound, W-212393, 3-(4-piperidinyl)indoles, 3-(4-piperidinyl) pyrrolo[2,3-b]pyridines) and antagonists (TRK-820, J-113397, JTC-801, octahydrobenzimidazol-2-ones, 2-(1,2,4-oxadiazol-5-yl)-1 H-indole, N-benzyl-D-prolines, SB-612111), biostable RNA Spiegelmers specific against N/OFQ, and a functional antagonist, nocistatin. Buprenorphine and naloxone benzoylhydrazone are two opioid receptor ligands showing high affinity for NOP receptors. NOP receptor agonists might be beneficial in the treatment of pain, anxiety, stress-induced anorexia, cough, neurogenic bladder, edema, drug dependence, and, less promising, in cerebral ischemia and epilepsy, while antagonists might be of help in the management of pain, depression, dementia and Parkinsonism. N/OFQ is also involved in cardiovascular, gastrointestinal and immune regulation. Altered plasma levels of N/OFQ have been reported in patients with various pain states, depression and liver diseases. This review summarizes the pharmacological characteristics of, and studies with, the available NOP receptor ligands and their possible clinical implications.


Journal of Pharmacology and Experimental Therapeutics | 2011

CTEP: A Novel, Potent, Long-Acting, and Orally Bioavailable Metabotropic Glutamate Receptor 5 Inhibitor

Lothar Lindemann; Georg Jaeschke; Aubin Michalon; Eric Vieira; Michael Honer; Will Spooren; Richard Porter; Thomas Hartung; Sabine Kolczewski; Bernd Büttelmann; Christophe Flament; Catherine Diener; Christophe Fischer; Silvia Gatti; Eric Prinssen; Neil Parrott; Gerhard Hoffmann; Joseph G. Wettstein

The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinsons disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors. CTEP penetrates the brain with a brain/plasma ratio of 2.6 and displaces the tracer [3H]3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-methyl-oxime (ABP688) in vivo in mice from brain regions expressing mGlu5 with an average ED50 equivalent to a drug concentration of 77.5 ng/g in brain tissue. This novel mGlu5 inhibitor is active in the stress-induced hyperthermia procedure in mice and the Vogel conflict drinking test in rats with minimal effective doses of 0.1 and 0.3 mg/kg, respectively, reflecting a 30- to 100-fold higher in vivo potency compared with 2-methyl-6-(phenylethynyl)pyridine (MPEP) and fenobam. CTEP is the first reported mGlu5 inhibitor with both long half-life of approximately 18 h and high oral bioavailability allowing chronic treatment with continuous receptor blockade with one dose every 48 h in adult and newborn animals. By enabling long-term treatment through a wide age range, CTEP allows the exploration of the full therapeutic potential of mGlu5 inhibitors for indications requiring chronic receptor inhibition.


British Journal of Pharmacology | 2009

Characterization of (R,S)‐5,7‐di‐tert‐butyl‐3‐hydroxy‐3‐trifluoromethyl‐3H‐benzofuran‐2‐one as a positive allosteric modulator of GABAB receptors

Pari Malherbe; R. Masciadri; R. D. Norcross; Frédéric Knoflach; C. Kratzeisen; M.-T. Zenner; Y. Kolb; A. Marcuz; J. Huwyler; T. Nakagawa; Richard Hugh Philip Porter; Andrew William Thomas; Joseph G. Wettstein; Andrew Sleight; Will Spooren; Eric Prinssen

As baclofen is active in patients with anxiety disorders, GABAB receptors have been implicated in the modulation of anxiety. To avoid the side effects of baclofen, allosteric enhancers of GABAB receptors have been studied to provide an alternative therapeutic avenue for modulation of GABAB receptors. The aim of this study was to characterize derivatives of (R,S)‐5,7‐di‐tert‐butyl‐3‐hydroxy‐3‐trifluoromethyl‐3H‐benzofuran‐2‐one (rac‐BHFF) as enhancers of GABAB receptors.


European Journal of Pharmacology | 2002

5-HT1A receptor activation and anti-cataleptic effects: high-efficacy agonists maximally inhibit haloperidol-induced catalepsy.

Eric Prinssen; Francis C. Colpaert; Wouter Koek

Studies have shown that 5-HT1A receptor ligands modulate antipsychotic-induced catalepsy. Here, we further examined the role of intrinsic activity at 5-HT1A receptors in these effects. The anti-cataleptic effects of 5-HT(1A) receptor ligands with positive intrinsic activity [from high to low: 3-chloro-4-fluorophenyl-(4-fluoro-4-[[(5-methyl-6-methylamino-pyridin-2-ylmethyl)-amino]-methyl]-piperidin-1-yl-methanone fumaric acid salt (F 13714), eptapirone, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), 2-[4-[4-(7-methoxy-1-naphtyl) piperazino]butyl]-4-methyl-2H,4H-1,2,4-triazin-3,5-dione maleic acid salt (F 11461), buspirone, 2-[4-[4-(7-benzofuranyl)piperazino]butyl]-4-methyl-2H,4H-1,2,4-triazin-3,5-dione (F 12826), ipsapirone, and (s)-N-tert-butyl-3-(4-(2-methoxyphenyl)piperazine-1-yl)-2-phenylpropanamide hydrochloride (WAY 100135)] and negative intrinsic activity [N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide dihydrochloride (WAY 100635)] were examined. Catalepsy was induced by the classical antipsychotic haloperidol (0.63 mg/kg) and measured in the cross-legged position test and in the bar test. All 5-HT1A receptor agonists, except WAY 100135, significantly attenuated the effects of haloperidol in the cross-legged position test. All agonists had similar effects in the bar test, except ipsapirone, which failed to attenuate haloperidol-induced catalepsy. In contrast to the effects observed with the agonists, the inverse agonist WAY 100635 appeared to enhance haloperidol-induced catalepsy in both tests, in agreement with earlier findings. The maximal effects of the 5-HT1A receptor ligands to attenuate catalepsy correlated positively with the rank order of their intrinsic activity at 5-HT1A receptors (either catalepsy test: r(S)=0.92, P<0.001). F 13714, which had the highest intrinsic activity, maximally inhibited haloperidol-induced catalepsy in the cross-legged position and bar tests (100% and 99% inhibition, respectively). Because the magnitude of the anti-cataleptic effects of 5-HT1A receptor ligands correlates positively with their intrinsic activity, it is likely that F 13714 has marked anti-cataleptic effects because of its high intrinsic activity at 5-HT1A receptors.


Clinical Pharmacokinectics | 2011

Development of a Physiologically Based Model for Oseltamivir and Simulation of Pharmacokinetics in Neonates and Infants

Neil Parrott; Brian E. Davies; Gerhard Hoffmann; Annette Koerner; Thierry Lavé; Eric Prinssen; Elizabeth Theogaraj; Thomas Singer

Background: Physiologically based pharmacokinetic (PBPK) modelling can assist in the development of drug therapies and regimens suitable for challenging patient populations such as very young children. This study describes a strategy employing PBPK models to investigate the intravenous use of the neuraminidase inhibitor oseltamivir in infants and neonates with influenza.Methods: Models of marmoset monkeys and humans were constructed for oseltamivir and its active metabolite oseltamivir carboxylate (OC). These models incorporated physicochemical properties and in vitro metabolism data into mechanistic representations of pharmacokinetic processes. Modelled processes included absorption, whole-body distribution, renal clearance, metabolic conversion of the pro-drug, permeability-limited hepatic disposition of OC and age dependencies for all of these processes. Models were refined after comparison of simulations in monkeys with plasma and liver concentrations measured in adult and newborn marmosets after intravenous and oral dosing. Then simulations with a human model were compared with clinical data taken from intravenous and oral studies in healthy adults and oral studies in infants and neonates. Finally, exposures after intravenous dosing in neonates were predicted.Results: Good simulations in adult marmosets could be obtained after model optimizations for pro-drug conversion, hepatic disposition of OC and renal clearance. After adjustment for age dependencies, including reductions in liver enzyme expression and renal function, the model simulations matched the trend for increased exposures in newborn marmosets compared with those in adults. For adult humans, simulated and observed data after both intravenous and oral dosing showed good agreement and although the data are currently limited, simulations in 1-year-olds and neonates are in reasonable agreement with published results for oral doses. Simulated intravenous infusion plasma profiles in neonates deliver therapeutic concentrations of OC that closely mimic the oral profiles, with 3-fold higher exposures of oseltamivir than those observed with the same oral dose.Conclusions: This work exemplifies the utility of PBPK models in predicting pharmacokinetics in the very young. Simulations showed agreement with a wide range of observational data, indicating that the processes determining the age-dependent pharmacokinetics of oseltamivir are well described.


Psychopharmacology | 1999

Interactions between neuroleptics and 5-HT(1A) ligands in preclinical behavioral models for antipsychotic and extrapyramidal effects.

Eric Prinssen; Mark S. Kleven; Wouter Koek

Rationale: Combining neuroleptics with 5-HT1A ligands is thought to improve the preclinical profile of neuroleptics and may be of interest in the development of new compounds that have greater therapeutic potential and/or are better tolerated. Objective: To examine 1) the ability of 5-HT1A ligands to alter the effects of neuroleptics in preclinical models for antipsychotic potential (hindlimb retraction time in the paw test) and extrapyramidal side-effects (forelimb retraction time in the paw test; catalepsy tests), 2) the role of intrinsic activity at 5-HT1A receptors in the modulatory effects of 5-HT1A ligands, and 3) the generality of the interactions across neuroleptics. Methods: The effects of different doses of 5-HT1A ligands with intrinsic activity ranging from high (e.g., 8-OH-DPAT) to low (e.g., WAY 100135) administered together with a fixed, high dose of the neuroleptics haloperidol, risperidone, and tropapride were examined in the paw test and on catalepsy. Results: Firstly, the 5-HT1A agonists 8-OH-DPAT and ipsapirone attenuated the extrapyramidal-like effects of haloperidol and risperidone more than their therapeutic-like effects; this was not observed for tropapride, where all of its effects were markedly attenuated. Secondly, neither the weak 5-HT1A agonist WAY 100135 nor the silent antagonist WAY 100635 attenuated the effects of neuroleptics. Thirdly, neuroleptics apparently differed in their sensitivity to interactions with 5-HT1A agonists inasmuch as 8-OH-DPAT and ipsapirone attenuated the effects of tropapride on hindlimb retraction times more than those of haloperidol or risperidone. Conclusions: The present data suggest that 5-HT1A agonists with intermediate or high, but not low, intrinsic activity may abolish the extrapyramidal effects of neuroleptics. Together with results of previous studies, it appears that 5-HT1A agonists alter the antipsychotic-like effects of neuroleptics, although this may depend on the neuroleptic studied.


Neuropsychopharmacology | 2009

Behavioral Effects of a Synthetic Agonist Selective for Nociceptin/Orphanin FQ Peptide Receptors in Monkeys

Mei-Chuan Ko; James H. Woods; William E. Fantegrossi; Chad M. Galuska; Jürgen Wichmann; Eric Prinssen

Behavioral effects of a nonpeptidic NOP (nociceptin/orphanin FQ Peptide) receptor agonist, Ro 64-6198, have not been studied in primate species. The aim of the study was to verify the receptor mechanism underlying the behavioral effects of Ro 64-6198 and to systematically compare behavioral effects of Ro 64–6198 with those of a μ-opioid receptor agonist, alfentanil, in monkeys. Both Ro 64-6198 (0.001–0.06 mg/kg, s.c.) and alfentanil (0.001–0.06 mg/kg, s.c.) produced antinociception against an acute noxious stimulus (50°C water) and capsaicin-induced allodynia. An NOP receptor antagonist, J-113397 (0.01–0.1 mg/kg, s.c.), dose-dependently produced rightward shifts of the dose–response curve of Ro 64-6198-induced antinociception. The apparent pA2 value of J-113397 was 8.0. Antagonist studies using J-113397 and naltrexone revealed that Ro 64-6198 produced NOP receptor-mediated antinociception independent of μ-opioid receptors. In addition, alfentanil dose-dependently produced respiratory depression and itch/scratching responses, but antinociceptive doses of Ro 64-6198 did not produce such effects. More important, Ro 64-6198 did not produce reinforcing effects comparable with those of alfentanil, cocaine, or methohexital under self-administration procedures in monkeys. These results provide the first functional evidence that the activation of NOP receptors produces antinociception without reinforcing effects in primates. Non-peptidic NOP receptor agonists may have therapeutic value as novel analgesics without abuse liability in humans.

Collaboration


Dive into the Eric Prinssen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wouter Koek

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge