Eric R. Bandstra
Clemson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric R. Bandstra.
Journal of Applied Physiology | 2009
David L. Allen; Eric R. Bandstra; Brooke C. Harrison; Seiha Thorng; Louis S. Stodieck; Paul J. Kostenuik; Sean Morony; David L. Lacey; Timothy G. Hammond; Leslie L. Leinwand; W. Scott Argraves; Ted A. Bateman; Jeremy L. Barth
Spaceflight results in a number of adaptations to skeletal muscle, including atrophy and shifts toward faster muscle fiber types. To identify changes in gene expression that may underlie these adaptations, we used both microarray expression analysis and real-time polymerase chain reaction to quantify shifts in mRNA levels in the gastrocnemius from mice flown on the 11-day, 19-h STS-108 shuttle flight and from normal gravity controls. Spaceflight data also were compared with the ground-based unloading model of hindlimb suspension, with one group of pure suspension and one of suspension followed by 3.5 h of reloading to mimic the time between landing and euthanization of the spaceflight mice. Analysis of microarray data revealed that 272 mRNAs were significantly altered by spaceflight, the majority of which displayed similar responses to hindlimb suspension, whereas reloading tended to counteract these responses. Several mRNAs altered by spaceflight were associated with muscle growth, including the phosphatidylinositol 3-kinase regulatory subunit p85alpha, insulin response substrate-1, the forkhead box O1 transcription factor, and MAFbx/atrogin1. Moreover, myostatin mRNA expression tended to increase, whereas mRNA levels of the myostatin inhibitor FSTL3 tended to decrease, in response to spaceflight. In addition, mRNA levels of the slow oxidative fiber-associated transcriptional coactivator peroxisome proliferator-associated receptor (PPAR)-gamma coactivator-1alpha and the transcription factor PPAR-alpha were significantly decreased in spaceflight gastrocnemius. Finally, spaceflight resulted in a significant decrease in levels of the microRNA miR-206. Together these data demonstrate that spaceflight induces significant changes in mRNA expression of genes associated with muscle growth and fiber type.
Radiation Research | 2008
Eric R. Bandstra; Michael J. Pecaut; Erica R. Anderson; Jeffrey S. Willey; Francesco De Carlo; Stuart R. Stock; Daila S. Gridley; Gregory A. Nelson; Howard G. Levine; Ted A. Bateman
Abstract Bandstra, E. R., Pecaut, M. J., Anderson, E. R., Willey, J. S., De Carlo, F., Stock, S. R., Gridley, D. S., Nelson, G. A., Levine, H. G. and Bateman, T. A. Long-Term Dose Response of Trabecular Bone in Mice to Proton Radiation. Radiat. Res. 169, 607–614 (2008). Astronauts on exploratory missions will experience a complex environment, including microgravity and radiation. While the deleterious effects of unloading on bone are well established, fewer studies have focused on the effects of radiation. We previously demonstrated that 2 Gy of ionizing radiation has deleterious effects on trabecular bone in mice 4 months after exposure. The present study investigated the skeletal response after total doses of proton radiation that astronauts may be exposed to during a solar particle event. We exposed mice to 0.5, 1 or 2 Gy of whole-body proton radiation and killed them humanely 117 days later. Tibiae and femora were analyzed using microcomputed tomography, mechanical testing, mineral composition and quantitative histomorphometry. Relative to control mice, mice exposed to 2 Gy had significant differences in trabecular bone volume fraction (−20%), trabecular separation (+11%), and trabecular volumetric bone mineral density (−19%). Exposure to 1 Gy radiation induced a nonsignificant trend in trabecular bone volume fraction (−13%), while exposure to 0.5 Gy resulted in no differences. No response was detected in cortical bone. Further analysis of the 1-Gy mice using synchrotron microCT revealed a significantly lower trabecular bone volume fraction (−13%) than in control mice. Trabecular bone loss 4 months after exposure to 1 Gy highlights the importance of further examination of how space radiation affects bone.
Bone | 2012
Shane A.J. Lloyd; Eric R. Bandstra; Jeffrey S. Willey; Stephanie E. Riffle; Leidamarie Tirado-Lee; Gregory A. Nelson; Michael J. Pecaut; Ted A. Bateman
Bone loss associated with microgravity unloading is well documented; however, the effects of spaceflight-relevant types and doses of radiation on the skeletal system are not well defined. In addition, the combined effect of unloading and radiation has not received much attention. In the present study, we investigated the effect of proton irradiation followed by mechanical unloading via hindlimb suspension (HLS) in mice. Sixteen-week-old female C57BL/6 mice were either exposed to 1 Gy of protons or a sham irradiation procedure (n=30/group). One day later, half of the mice in each group were subjected to four weeks of HLS or normal loading conditions. Radiation treatment alone (IRR) resulted in approximately 20% loss of trabecular bone volume fraction (BV/TV) in the tibia and femur, with no effect in the cortical bone compartment. Conversely, unloading induced substantially greater loss of both trabecular bone (60-70% loss of BV/TV) and cortical bone (approximately 20% loss of cortical bone volume) in both the tibia and femur, with corresponding decreases in cortical bone strength. Histological analyses and serum chemistry data demonstrated increased levels of osteoclast-mediated bone resorption in unloaded mice, but not IRR. HLS+IRR mice generally experienced greater loss of trabecular bone volume fraction, connectivity density, and trabecular number than either unloading or irradiation alone. Although the duration of unloading may have masked certain effects, the skeletal response to irradiation and unloading appears to be additive for certain parameters. Appropriate modeling of the environmental challenges of long duration spaceflight will allow for a better understanding of the underlying mechanisms mediating spaceflight-associated bone loss and for the development of effective countermeasures.
Radiation Research | 2009
Eric R. Bandstra; Raymond W. Thompson; Gregory A. Nelson; Jeffrey S. Willey; Stefan Judex; Mark A. Cairns; E.R. Benton; Marcelo E. Vazquez; James A. Carson; Ted A. Bateman
Abstract Bandstra, E. R., Thompson, R. W., Nelson, G. A., Willey, J. S., Judex, S., Cairns, M. A., Benton, E. R., Vazquez, M. E., Carson, J. A. and Bateman, T. A. Musculoskeletal Changes in Mice from 20–50 cGy of Simulated Galactic Cosmic Rays. Radiat. Res. 172, 21-29 (2009). On a mission to Mars, astronauts will be exposed to a complex mix of radiation from galactic cosmic rays. We have demonstrated a loss of bone mass from exposure to types of radiation relevant to space flight at doses of 1 and 2 Gy. The effects of space radiation on skeletal muscle, however, have not been investigated. To evaluate the effect of simulated galactic cosmic radiation on muscle fiber area and bone volume, we examined mice from a study in which brains were exposed to collimated iron-ion radiation. The collimator transmitted a complex mix of charged secondary particles to bone and muscle tissue that represented a low-fidelity simulation of the space radiation environment. Measured radiation doses of uncollimated secondary particles were 0.47 Gy at the proximal humerus, 0.24–0.31 Gy at the midbelly of the triceps brachii, and 0.18 Gy at the proximal tibia. Compared to nonirradiated controls, the proximal humerus of irradiated mice had a lower trabecular bone volume fraction, lower trabecular thickness, greater cortical porosity, and lower polar moment of inertia. The tibia showed no differences in any bone parameter. The triceps brachii of irradiated mice had fewer small-diameter fibers and more fibers containing central nuclei. These results demonstrate a negative effect on the skeletal muscle and bone systems of simulated galactic cosmic rays at a dose and LET range relevant to a Mars exploration mission. The presence of evidence of muscle remodeling highlights the need for further study.
Journal of Applied Physiology | 2006
Sarah A. Hamilton; Michael J. Pecaut; Daila S. Gridley; Neil D. Travis; Eric R. Bandstra; Jeff S. Willey; Gregory A. Nelson; Ted A. Bateman
Advances in Space Research | 2008
Shane A.J. Lloyd; Eric R. Bandstra; Neil D. Travis; Gregory A. Nelson; J. Daniel Bourland; Michael J. Pecaut; Daila S. Gridley; Jeffrey S. Willey; Ted A. Bateman
Medicine and Science in Sports and Exercise | 2017
Dana M. DiPasquale; Eric R. Bandstra; John P. Florian
Archive | 2013
W. Scott Argraves; Ted A. Bateman; Jeremy L. Barth; Paul J. Kostenuik; Sean Morony; David L. Lacey; Timothy Grant Hammond; L. Allen; Eric R. Bandstra; Brooke C. Harrison; Seiha Thorng; Louis S. Stodieck
Journal of Applied Physiology | 2011
David L. Allen; Eric R. Bandstra; Brooke C. Harrison; Seiha Thorng; Louis S. Stodieck; Paul J. Kostenuik; Sean Morony; David L. Lacey; Timothy G. Hammond; Leslie L. Leinwand; W. S. Argraves; Ted A. Bateman; Jeremy L. Barth
Archive | 2010
Lukas Barth; Leslie L. Leinwand; W. Scott Argraves; Ted A. Bateman; Jeremy Stodieck; Paul J. Kostenuik; Sean Morony; David L. Lacey; Tim David; Lennell Allen; Eric R. Bandstra; Brooke C. Harrison; Seiha Thorng; S. Louis; Joseph A. Covi; Brandon D. Bader; Ernest S. Chang; Donald L. Mykles; Nancy Dumont; Jean-Jacques Frenette; Sara Mazzucco; Francesco Agostini; Alessandro Mangogna; Luigi Cattin; Gianni Biolo