Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric R. Muir is active.

Publication


Featured researches published by Eric R. Muir.


Journal of Cerebral Blood Flow and Metabolism | 2013

Chronic Rapamycin Restores Brain Vascular Integrity and Function Through NO Synthase Activation and Improves Memory in Symptomatic Mice Modeling Alzheimer’s Disease

Ai Ling Lin; Wei Zheng; Jonathan Halloran; Raquel Burbank; Stacy A. Hussong; Matthew J. Hart; Martin A. Javors; Yen Yu I Shih; Eric R. Muir; Rene Solano Fonseca; Randy Strong; Arlan Richardson; James D. Lechleiter; Peter T. Fox; Veronica Galvan

Vascular pathology is a major feature of Alzheimer’s disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias.


NMR in Biomedicine | 2011

MRI of retinal and choroidal blood flow with laminar resolution

Eric R. Muir; Timothy Q. Duong

The retina is nourished by two distinct circulations: the retinal vessels within the inner retina and the choroidal vessels behind the neural retina. The outer nuclear layer and the inner and outer segments of the photoreceptors in between are avascular. The aim of this study was to determine whether arterial spin labeling MRI could provide sufficient resolution to differentiate between quantitative retinal blood flow (rBF) and choroidal blood flow (chBF), and whether this technique is sufficiently sensitive to detect vascular‐specific blood flow (BF) changes modulated by anesthetics. Arterial spin labeling MRI was performed at 42 × 42 × 400 µm3 in the mouse retina at 7 T, and was used to investigate the effects of isoflurane and ketamine/xylazine anesthesia on rBF and chBF. MRI yielded unambiguous differentiation of rBF, chBF and the avascular layer in between. Under isoflurane, chBF was 7.7 ± 2.1 mL/g/min and rBF was 1.3 ± 0.44 mL/g/min (mean ± SD, n = 7, p < 0.01). Under ketamine/xylazine anesthesia in the same animals, chBF was 4.3 ± 1.9 mL/g/min and rBF was 0.88 ± 0.22 mL/g/min (p < 0.01). Under ketamine/xylazine anesthesia, rBF was lower by 29% (P < 0.01) and chBF by 42% (P < 0.01) relative to isoflurane. This study demonstrates, for the first time, the quantitative imaging of rBF and chBF in vivo, providing a new method to study basal values and alterations of rBF and chBF. Copyright


Magnetic Resonance in Medicine | 2008

Cerebral blood flow MRI in mice using the cardiac-spin-labeling technique.

Eric R. Muir; Qiang Shen; Timothy Q. Duong

Continuous arterial spin labeling MRI with a separate neck labeling coil provides a highly sensitive method to image cerebral blood flow (CBF). In mice, however, this has not been possible because the proximity of the neck coil to the brain uses the neck coil to significantly saturate the brain signal. To overcome this limitation the cardiac spin labeling (CSL) technique is introduced in which the labeling coil is placed at the heart position. To demonstrate its utility, CSL CBF was applied to image quantitative basal CBF and hypercapnia‐induced CBF changes. This approach provides a practical means to image CBF with high sensitivity in small animals, compares favorably to existing mouse CBF imaging techniques, and could broaden CBF applications in mice where many brain disease and transgenic models are widely available. Magn Reson Med 60:744–748, 2008.


Investigative Ophthalmology & Visual Science | 2011

Lamina-Specific Functional MRI of Retinal and Choroidal Responses to Visual Stimuli

Yen Yu I Shih; Bryan H. De La Garza; Eric R. Muir; William E. Rogers; Joseph M. Harrison; Jeffrey W. Kiel; Timothy Q. Duong

PURPOSE To demonstrate lamina-specific functional magnetic resonance imaging (MRI) of retinal and choroidal responses to visual stimulation of graded luminance, wavelength, and frequency. MATERIALS AND METHODS High-resolution (60 × 60 μm) MRI was achieved using the blood-pool contrast agent, monocrystalline iron oxide nanoparticles (MION) and a high-magnetic-field (11.7 T) scanner to image functional changes in the normal rat retina associated with various visual stimulations. MION functional MRI measured stimulus-evoked blood-volume (BV) changes. Graded luminance, wavelength, and frequency were investigated. Stimulus-evoked fMRI signal changes from the retinal and choroidal vascular layers were analyzed. RESULTS MRI revealed two distinct laminar signals that corresponded to the retinal and choroidal vascular layers bounding the retina and were separated by the avascular layer in between. The baseline outer layer BV index was 2-4 times greater than the inner layer BV, consistent with higher choroidal vascular density. During visual stimulation, BV responses to flickering light of different luminance, frequency, and wavelength in the inner layer were greater than those in the outer layer. The inner layer responses were dependent on luminance, frequency, and wavelength, whereas the outer layer responses were not, suggesting differential neurovascular coupling between the two vasculatures. CONCLUSIONS This is the first report of simultaneous resolution of layer-specific functional responses of the retinal and choroid vascular layers to visual stimulation in the retina. This imaging approach could have applications in early detection and longitudinal monitoring of retinal diseases where retinal and choroidal hemodynamics may be differentially perturbed at various stages of the diseases.


Japanese Journal of Ophthalmology | 2009

Magnetic Resonance Imaging of the Retina

Timothy Q. Duong; Eric R. Muir

This paper reviews recent developments in high-resolution magnetic resonance imaging (MRI) and its application to image anatomy, physiology, and function in the retina of animals. It describes technical issues and solutions in performing retinal MRI, anatomical MRI, blood oxygenation level-dependent functional MRI (fMRI), and blood-flow MRI both of normal retinas and of retinal degeneration. MRI offers unique advantages over existing retinal imaging techniques, including the ability to image multiple layers without depth limitation and to provide multiple clinically relevant data in a single setting. Retinal MRI has the potential to complement existing retinal imaging techniques.


Magnetic Resonance in Medicine | 2011

Layer-specific functional and anatomical MRI of the retina with passband balanced SSFP

Eric R. Muir; Timothy Q. Duong

The retina consists of multiple cellular and synaptic layers and is nourished by two distinct (retinal and choroidal) circulations bounding the retina, separated by an avascular layer. High spatiotemporal resolution, layer‐specific MRI of the retina remains challenging due to magnetic inhomogeneity‐induced artifacts. This study reports passband balanced steady‐state free‐precession (bSSFP) MRI at 45×45×500 μm and 1.6 s temporal resolution to image the mouse retina, overcoming geometric distortion and signal dropout while maintaining rapid acquisition and high signal‐to‐noise ratio. bSSFP images revealed multiple alternating dark‐bright‐dark‐bright retinal layers. Hypoxic (10% O2) inhalation decreased bSSFP signals in the two layers bounding the retina, corresponding to the retinal and choroidal vasculatures. The layer in between showed no substantial response and was assigned the avascular photoreceptor layers. Choroidal responses (−25.9±6.4%, mean±SD, n=6) were significantly (P<0.05) larger than retinal vascular responses (−11.6±2.4%). bSSFP offers very high spatiotemporal resolution and could have important applications in imaging layer‐specific changes in retinal diseases. Magn Reson Med, 2011.


Journal of Cerebral Blood Flow and Metabolism | 2013

Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice

Ai Ling Lin; Daniel Pulliam; Sathyaseelan S. Deepa; Jonathan Halloran; Stacy A. Hussong; Raquel Burbank; Andrew Bresnen; Yuhong Liu; Natalia Podlutskaya; Anuradha Soundararajan; Eric R. Muir; Timothy Q. Duong; Alex Bokov; Carlo Viscomi; Massimo Zeviani; Arlan Richardson; Holly Van Remmen; Peter T. Fox; Veronica Galvan

Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders.


NMR in Biomedicine | 2011

Blood oxygenation level-dependent (BOLD) functional MRI of visual stimulation in the rat retina at 11.7 T

Bryan H. De La Garza; Eric R. Muir; Guang Li; Yen Yu I Shih; Timothy Q. Duong

Although optically based imaging techniques provide valuable functional and physiological information of the retina, they are mostly limited to the probing of the retinal surface and require an unobstructed light path. MRI, in contrast, could offer physiological and functional data without depth limitation. Blood oxygenation level‐dependent functional MRI (BOLD fMRI) of the thin rat retina is, however, challenging because of the need for high spatial resolution, and the potential presence of eye movement and susceptibility artifacts. This study reports a novel application of high‐resolution (111 × 111 × 1000 µm3) BOLD fMRI of visual stimulation in the anesthetized rat retina at 11.7 T. A high‐field MRI scanner was utilized to improve the signal‐to‐noise ratio, spatial resolution and BOLD sensitivity. Visual stimuli (8 Hz diffuse achromatic light) robustly increased BOLD responses in the retina [5.0 ± 0.8% from activated pixels and 3.1 ± 1.1% from the whole‐retina region of interest (mean ± SD), n = 12 trials on six rats, p < 0.05 compared with baseline]. Some activated pixels were detected surrounding the pupil and ciliary muscle because of accommodation reflex to visual stimuli, and were reduced with atropine and phenylephrine eye drops. BOLD fMRI scans without visual stimulations showed no significantly activated pixels (whole‐retina BOLD changes were 0.08 ± 0.34%, n = 6 trials on five rats, not statistically different from baseline, p > 0.05). BOLD fMRI of visual stimulation has the potential to provide clinically relevant data to probe hemodynamic neurovascular coupling and dysfunction of the retina with depth resolution. Copyright


Investigative Ophthalmology & Visual Science | 2012

Magnetic resonance imaging indicates decreased choroidal and retinal blood flow in the DBA/2J mouse model of glaucoma

William J. Lavery; Eric R. Muir; Jeffrey W. Kiel; Timothy Q. Duong

PURPOSE This study tests the hypothesis that reduced retinal and choroidal blood flow (BF) occur in the DBA/2J mouse model of glaucoma. METHODS Quantitative BF magnetic resonance imaging (MRI) with a resolution of 42 × 42 × 400 μm was performed on DBA/2J mice at 4, 6, and 9 months of age and C57BL/6 age-matched controls under isoflurane anesthesia. BF MRI images were acquired with echo-planar imaging using an arterial spin labeling technique and a custom-made eye coil at 7 Tesla. Automated profile analysis was performed to average layer-specific BF along the length of the retina and choroid. In separate experiments, servo-null micropressure measurements of iliac arterial pressure were performed in old mice of both strains. RESULTS Choroidal BF was lower in DBA/2J mice than in age-matched C57BL/6 control mice at 4, 6, and 9 months of age (P < 0.01 for all age-matched groups). Retinal BF was lower in DBA/2J mice than in C57BL/6 mice at the 9-month time point (P < 0.01). Mean arterial pressure was not significantly different in aged C57BL/6 mice compared with aged DBA/2J mice. CONCLUSIONS The reduced ocular blood flow in DBA/2J mice compared with C57BL/6 control mice suggests that ischemia or hypoxia should be considered as a possible contributing factor in the optic neuropathy in the DBA/2J mouse model of glaucoma.


Experimental Eye Research | 2012

Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats

Guang Li; Bryan H. De La Garza; Yen Yu I Shih; Eric R. Muir; Timothy Q. Duong

The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution.

Collaboration


Dive into the Eric R. Muir's collaboration.

Top Co-Authors

Avatar

Timothy Q. Duong

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Bryan H. De La Garza

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Guang Li

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jeffrey W. Kiel

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Shiliang Huang

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yen Yu I Shih

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Damon P. Cardenas

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Qiang Shen

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

René C. Rentería

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Saurav B Chandra

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge