Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric R. Pardyjak is active.

Publication


Featured researches published by Eric R. Pardyjak.


Journal of the Atmospheric Sciences | 2002

Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope

P. Monti; H. J. S. Fernando; Marko Princevac; W. C. Chan; Tomasz Kowalewski; Eric R. Pardyjak

Measurements were conducted on an eastern slope of the Salt Lake Basin (SLB) as a part of the Vertical Transport and Mixing Experiment (VTMX) conducted in October 2000. Of interest was the nocturnal boundary layer on a slope (in particular, katabatic flows) in the absence of significant synoptic influence. Extensive measurements of mean flow, turbulence, temperature, and solar radiation were made, from which circulation patterns on the slope and the nature of stratified turbulence in katabatic winds were inferred. The results show that near the surface (,25‐50 m) the nocturnal flow is highly stratified and directed downslope, but at higher levels winds strongly vary in magnitude and direction with height and time, implying the domination of upper levels by air intrusions. These intrusions may peel off from different slopes surrounding the SLB, have different densities, and flow at their equilibrium density levels. The turbulence was generally weak and continuous, but sudden increases of turbulence levels were detected as the mean gradient Richardson number ( ) dropped to Rig about unity. With a short timescale fluctuated on the order of a few tens of seconds while modulating with Rig a longer (along-slope internal waves sloshing) timescale of about half an hour. The mixing efficiency (or the flux Richardson number) of the flow was found to be a strong function of , similar to that found in laboratory Rig experiments with inhomogeneous stratified shear flows. The eddy diffusivities of momentum and heat were evaluated, and they showed a systematic variation with when scaled with the shear length scale and the rms Rig vertical velocity of turbulence.


Environmental Modelling and Software | 2011

Assessment of GPU computational enhancement to a 2D flood model

Alfred Kalyanapu; Siddharth Shankar; Eric R. Pardyjak; David R. Judi; Steven J. Burian

This paper presents a study of the computational enhancement of a Graphics Processing Unit (GPU) enabled 2D flood model. The objectives are to demonstrate the significant speedup of a new GPU-enabled full dynamic wave flood model and to present the effect of model spatial resolution on its speedup. A 2D dynamic flood model based on the shallow water equations is parallelized using the GPU approach developed in NVIDIAs Compute Unified Development Architecture (CUDA). The model is validated using observations of the Taum Sauk pump storage hydroelectric power plant dam break flood event. For the Taum Sauk flood simulation, the GPU model speedup compared to an identical CPU model implementation is 80x-88x for computational domains ranging from 65.5 k to 1.05 M cells. Thirty minutes of event time were simulated by the GPU model in 2 min, 15 times faster than real time. An important finding of the analysis of model domain size is the GPU model is not constrained by model domain extent as is the CPU model. Finally, the GPU implementation is shown to be scalable compared with the CPU version, an important characteristic for large domain flood modeling studies.


Journal of Applied Meteorology | 2005

Evening Transition Observations in Phoenix, Arizona

Anthony J. Brazel; H. J. S. Fernando; Julian Hunt; Nancy Selover; Brent C. Hedquist; Eric R. Pardyjak

Abstract Past research has suggested that the evening transition in complex topography typically has several main features, such as (a) continued weak upslope flows persisting 3–5 h after sunset (if the sidewalls of the valley prevent Coriolis-induced turning of winds), thus signifying delayed transition; (b) unsteady local stagnation and vertical mixing within tens of meters above the surface; and (c) transition of stagnation fronts to downslope/downvalley gravity currents during the evening hours, especially at higher-elevation (steeper) slopes, and their arrival at adjoining low-elevation gentle slopes as “slope breezes.” This transition process typically occurs in locales such as Phoenix, Arizona, which has expansive exposure to plains in one direction (to the west and south) and is adjacent to abrupt change in the terrain in other directions (primarily to the north and east). An analysis of wind records from several automated weather stations and a radar wind profiler for selected characteristic peri...


Journal of Fluid Mechanics | 2002

Flux Richardson number measurements in stable atmospheric shear flows

Eric R. Pardyjak; P. Monti; H. J. S. Fernando

The flux Richardson number R f (also known as the mixing efficiency) for the stably stratified atmospheric boundary layer is investigated as a function of the gradient Richardson number Ri g using data taken during two field studies: the Vertical Transport and Mixing Experiment (VTMX) in Salt Lake City, Utah (October 2000), and a long-term rural field data set from Technical Area 6 (TA-6) at Los Alamos National Laboratory, New Mexico. The results show the existence of a maximum R f (0.4–0.5) at a gradient Richardson number of approximately unity. These large-Reynolds-number results agree well with recent laboratory stratified shear layer measurements, but are at odds with some commonly used R f parameterizations, particularly under high- Ri g conditions. The observed variations in buoyancy flux and turbulent kinetic energy production are consistent with the concept of global intermittency of the atmospheric stable boundary layer.


Bulletin of the American Meteorological Society | 2015

The MATERHORN: Unraveling the Intricacies of Mountain Weather

H. J. S. Fernando; Eric R. Pardyjak; S. Di Sabatino; Fotini Katopodes Chow; S. F. J. De Wekker; Sebastian W. Hoch; Josh Hacker; John Pace; Thomas G. Pratt; Zhaoxia Pu; W. J. Steenburgh; C.D. Whiteman; Y. Wang; Dragan Zajic; B. Balsley; Reneta Dimitrova; George D. Emmitt; C. W. Higgins; J. C. R. Hunt; Jason C. Knievel; Dale A. Lawrence; Yubao Liu; Daniel F. Nadeau; E. Kit; B. W. Blomquist; Patrick Conry; R. S. Coppersmith; Edward Creegan; M. Felton; Andrey A. Grachev

AbstractEmerging application areas such as air pollution in megacities, wind energy, urban security, and operation of unmanned aerial vehicles have intensified scientific and societal interest in mountain meteorology. To address scientific needs and help improve the prediction of mountain weather, the U.S. Department of Defense has funded a research effort—the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program—that draws the expertise of a multidisciplinary, multi-institutional, and multinational group of researchers. The program has four principal thrusts, encompassing modeling, experimental, technology, and parameterization components, directed at diagnosing model deficiencies and critical knowledge gaps, conducting experimental studies, and developing tools for model improvements. The access to the Granite Mountain Atmospheric Sciences Testbed of the U.S. Army Dugway Proving Ground, as well as to a suite of conventional and novel high-end airborne and surface measurement platfor...


Boundary-Layer Meteorology | 2001

Determination of the surface drag coefficient

L. Mahrt; Dean Vickers; Jielun Sun; Niels Otto Jensen; Hans Ejsing Jørgensen; Eric R. Pardyjak; H. J. S. Fernando

This study examines the dependence of the surface drag coefficienton stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches.The roughness length corresponding to the usual Monin–Obukhovstability functions decreases with increasing wind speed. This dependence on wind speed cannot be eliminated by adjusting the stability functions. If physical, the decrease of the roughness length with increasing wind speed might be due to the decreasing role of viscous effectsand streamlining of the vegetation, although these effects cannot be isolated from existing atmospheric data.For weak winds, both the mean flow and the stress vector often meander significantly in response to mesoscale motions. The relationship between meandering of the stress and wind vectors is examined. For weak winds, the drag coefficient can be sensitive to the method of calculation, partly due to meandering of the stress vector.


Journal of Applied Meteorology and Climatology | 2007

Properties of the Wind Field within the Oklahoma City Park Avenue Street Canyon. Part I: Mean Flow and Turbulence Statistics

M. A. Nelson; Eric R. Pardyjak; Joseph Klewicki; S. U. Pol; Michael J. Brown

Abstract Velocity data were obtained from sonic anemometer measurements within an east–west-running street canyon located in the urban core of Oklahoma City, Oklahoma, during the Joint Urban 2003 field campaign. These data were used to explore the directional dependence of the mean flow and turbulence within a real-world street canyon. The along-canyon vortex that is a key characteristic of idealized street canyon studies was not evident in the mean wind data, although the sensor placement was not optimized for the detection of such structures. Instead, surface wind measurements imply that regions of horizontal convergence and divergence exist within the canopy, which are likely caused by taller buildings diverting the winds aloft down into the canopy. The details of these processes appear to be dependent on relatively small perturbations in the prevailing wind direction. Turbulence intensities within the canyon interior appeared to have more dependence on prevailing wind direction than they did in the in...


Meteorologische Zeitschrift | 2009

A case study of the development of nocturnal slope flows in a wide open valley and associated air quality implications

Eric R. Pardyjak; H. J. S. Fernando; Julian Hunt; Andrey A. Grachev; James R. Anderson

This paper documents the development of nocturnal flows in the wide open Phoenix, Arizona (U.S.A) valley (30 km x 100 km) that is bordered by a large nearly flat plain to the west and high mountains to the north and east. Local thermally driven winds concomitant with the absence of significant synoptic pressure gradients dominate typical winter conditions in the Phoenix valley. The purpose of the Phoenix Air Flow Experiment (PAFEX-1) was to study the development of thermally driven flows during the evening transition in a sloping valley and describe the general pattern of transport and dispersion of contaminants during transition periods and at night. Measurements were made using a tethered balloon, sonic anemometer, balloon-based aerosol sampler, radiation sensors, cup anemometers, thermistors and humidity sensors in conjunction with data collected from 44 standard meteorological stations located throughout the valley. Over the period of 15 days in January and February 1998 the general diurnal flow patterns were repeatable, but varied substantially around the valley. This paper focuses on a case study of the evening transition, nocturnal circulation and morning breakdown of the nocturnal circulation on the night of 31 January and morning of 1 February. Central valley measurements were consistent with the notion that the evening transition is associated with a moving front, followed by intense mixing and the movement of the front to establish down-valley winds. Flows originating from different slopes led to the arrival of fronts at the various measurement locations at different times. These flows intrude into the valley and interact with each other, often causing multi-layered vertical structure. The intrusions respond to the evolving stratification and cause striking variability of these layers, for example, periodic wind and temperature disturbances corresponding to the arrival of new intrusive fronts. The evolution of the boundary layer was found to have a direct bearing on the pollution concentrations in the Phoenix air shed.


Journal of Applied Meteorology and Climatology | 2007

Properties of the Wind Field within the Oklahoma City Park Avenue Street Canyon. Part II: Spectra, Cospectra, and Quadrant Analyses

M. A. Nelson; Eric R. Pardyjak; Michael J. Brown; Joseph Klewicki

Velocity data were obtained within Park Avenue in Oklahoma City, Oklahoma, using three-dimensional sonic anemometers under unstable atmospheric conditions. These data are used to produce velocity spectra, cospectra, and weighted joint probability density functions at various heights and horizontal locations in the street canyon. This analysis has helped to describe a number of physically interesting urban flow phenomena. Previous research has shown that the ratio of Reynolds shear stresses to normal stresses is typically much smaller deep within the canopy than those ratios found at the top of canopy and in the roughness sublayer. The turbulence in this region exhibits significant contributions to all four quadrants of a weighted joint-probability density function of horizontal and vertical velocity fluctuations, yielding the characteristic small Reynolds shear stresses in the flow. The velocity cospectra measured at the base of the canopy show evidence of discrete frequency bands of both positive and negative correlation that yield a small correlation, as indicated by the Reynolds shear stresses. Two major peaks were often observed in the spectra and cospectra: a low-frequency peak that appears to be associated with vortex shedding off the buildings and a midfrequency peak generally associated with canyon geometry. The low-frequency peak was found to produce a countergradient contribution to the along-wind vertical velocity covariance. Standard spectral tests for local isotropy indicate that isotropic conditions occur at different frequencies depending on spatial location, demonstrating the need to be thorough when testing for local isotropy with the urban canopy.


Boundary-Layer Meteorology | 2016

Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

Andrey A. Grachev; Laura S. Leo; Silvana Di Sabatino; H. J. S. Fernando; Eric R. Pardyjak; Christopher W. Fairall

Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2–4

Collaboration


Dive into the Eric R. Pardyjak's collaboration.

Top Co-Authors

Avatar

Michael J. Brown

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc B. Parlange

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge