Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Rees is active.

Publication


Featured researches published by Eric Rees.


Neuron | 2015

ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function

Tetsuro Murakami; Seema Qamar; Julie Qiaojin Lin; Gabriele S. Kaminski Schierle; Eric Rees; Akinori Miyashita; Ana Rita Costa; Roger B. Dodd; Fiona T.S. Chan; Claire H. Michel; Deborah Kronenberg-Versteeg; Yi Li; Seung-Pil Yang; Yosuke Wakutani; William Meadows; Rodylyn Rose Ferry; Liang Dong; Gian Gaetano Tartaglia; Giorgio Favrin; Wen-Lang Lin; Dennis W. Dickson; Mei Zhen; David Ron; Gerold Schmitt-Ulms; Paul E. Fraser; Neil A Shneider; Christine E. Holt; Michele Vendruscolo; Clemens F. Kaminski; Peter St George-Hyslop

Summary The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins.


Journal of the American Chemical Society | 2011

In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging.

Gabriele S. Kaminski Schierle; Sebastian van de Linde; Miklós Erdélyi; Elin K. Esbjörner; Teresa Klein; Eric Rees; Carlos W. Bertoncini; Christopher M. Dobson; Markus Sauer; Clemens F. Kaminski

Misfolding and aggregation of peptides and proteins is a characteristic of many neurodegenerative disorders, including Alzheimers disease (AD). In AD the β-amyloid peptide (Aβ) aggregates to form characteristic fibrillar structures, which are the deposits found as plaques in the brains of patients. We have used direct stochastic optical reconstruction microscopy, dSTORM, to probe the process of in situ Aβ aggregation and the morphology of the ensuing aggregates with a resolution better than 20 nm. We are able to distinguish different types of structures, including oligomeric assemblies and mature fibrils, and observe a number of morphological differences between the species formed in vitro and in vivo, which may be significant in the context of disease. Our data support the recent view that intracellular Aβ could be associated with Aβ pathogenicity in AD, although the major deposits are extracellular, and suggest that this approach will be widely applicable to studies of the molecular mechanisms of protein deposition diseases.


Chemistry & Biology | 2014

Direct Observations of Amyloid β Self-Assembly in Live Cells Provide Insights into Differences in the Kinetics of Aβ(1–40) and Aβ(1–42) Aggregation

Elin K. Esbjörner; Fiona T.S. Chan; Eric Rees; Miklós Erdélyi; Leila M. Luheshi; Carlos W. Bertoncini; Clemens F. Kaminski; Christopher M. Dobson; Gabriele S. Kaminski Schierle

Summary Insight into how amyloid β (Aβ) aggregation occurs in vivo is vital for understanding the molecular pathways that underlie Alzheimer’s disease and requires new techniques that provide detailed kinetic and mechanistic information. Using noninvasive fluorescence lifetime recordings, we imaged the formation of Aβ(1–40) and Aβ(1–42) aggregates in live cells. For both peptides, the cellular uptake via endocytosis is rapid and spontaneous. They are then retained in lysosomes, where their accumulation leads to aggregation. The kinetics of Aβ(1–42) aggregation are considerably faster than those of Aβ(1–40) and, unlike those of the latter peptide, show no detectable lag phase. We used superresolution fluorescence imaging to examine the resulting aggregates and could observe compact amyloid structures, likely because of spatial confinement within cellular compartments. Taken together, these findings provide clues as to how Aβ aggregation may occur within neurons.


Nature Communications | 2015

Structural analysis of herpes simplex virus by optical super-resolution imaging

Romain F. Laine; Anna Albecka; Sebastian van de Linde; Eric Rees; Colin M. Crump; Clemens F. Kaminski

Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument. Supplementary information The online version of this article (doi:10.1038/ncomms6980) contains supplementary material, which is available to authorized users.


Optical Nanoscopy | 2012

Blind assessment of localisation microscope image resolution

Eric Rees; Miklós Erdélyi; Dorothea Pinotsi; Alex E. Knight; Daniel Metcalf; Clemens F. Kaminski

BackgroundThis paper analyses the resolution achieved in localisation microscopy experiments. The resolution is an essential metric for the correct interpretation of super-resolution images, but it varies between specimens due to different localisation precisions and densities.MethodsBy analysing localisation microscopy as a statistical method of Density Estimation, we present a method that produces a blind estimate of the resolution in a super-resolved image. This estimate is derived directly from the raw image data without the need for comparisons with known calibration specimens. It is corroborated with simulated and experimental data.Results and discussionLocalisation microscopy has a resolution limit equal to 2σ, where σ is the r.m.s. localisation precision, evaluated as an average Thompson precision, Cramer Rao bound, or otherwise. Further, for a limited-sampling case in which there is only one localisation per fluorophore, the expected resolution of an optimised super-resolution image is worsened to approximately 3σ, due to smoothing processes that are necessarily involved in visualising the specimen with limited data. This 2σ or 3σ resolution can be estimated for any localisation microscopy specimen, and this metric can corroborate or replace empirical estimates of resolution. Other quantifiable resolution losses arise from sparse labelling, fluorescent label size, and motion blur.


Journal of Optics | 2013

Elements of image processing in localization microscopy

Eric Rees; Miklós Erdélyi; Gabriele S. Kaminski Schierle; Alex E. Knight; Clemens F. Kaminski

Localization microscopy software generally contains three elements: a localization algorithm to determine fluorophore positions on a specimen, a quality control method to exclude imprecise localizations, and a visualization technique to reconstruct an image of the specimen. Such algorithms may be designed for either sparse or partially overlapping (dense) fluorescence image data, and making a suitable choice of software depends on whether an experiment calls for simplicity and resolution (favouring sparse methods), or for rapid data acquisition and time resolution (requiring dense methods). We discuss the factors involved in this choice. We provide a full set of MATLAB routines as a guide to localization image processing, and demonstrate the usefulness of image simulations as a guide to the potential artefacts that can arise when processing over-dense experimental fluorescence images with a sparse localization algorithm.


Optics Express | 2013

Correcting chromatic offset in multicolor super-resolution localization microscopy

Miklós Erdélyi; Eric Rees; Daniel Metcalf; Gabriele S. Kaminski Schierle; László Dudás; József Sinkó; Alex E. Knight; Clemens F. Kaminski

Localization based super-resolution microscopy techniques require precise drift correction methods because the achieved spatial resolution is close to both the mechanical and optical performance limits of modern light microscopes. Multi-color imaging methods require corrections in addition to those dealing with drift due to the static, but spatially-dependent, chromatic offset between images. We present computer simulations to quantify this effect, which is primarily caused by the high-NA objectives used in super-resolution microscopy. Although the chromatic offset in well corrected systems is only a fraction of an optical wavelength in magnitude (<50 nm) and thus negligible in traditional diffraction limited imaging, we show that object colocalization by multi-color super-resolution methods is impossible without appropriate image correction. The simulated data are in excellent agreement with experiments using fluorescent beads excited and localized at multiple wavelengths. Finally we present a rigorous and practical calibration protocol to correct for chromatic optical offset, and demonstrate its efficacy for the imaging of transferrin receptor protein colocalization in HeLa cells using two-color direct stochastic optical reconstruction microscopy (dSTORM).


Biomedical Optics Express | 2014

TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy.

József Sinkó; Róbert Kákonyi; Eric Rees; Daniel Metcalf; Alex E. Knight; Clemens F. Kaminski; Gábor Szabó; Miklós Erdélyi

Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments.


Optics Express | 2012

Periodic interactions between solitons and dispersive waves during the generation of non-coherent supercontinuum radiation

Chu Liu; Eric Rees; Toni Laurila; Shuisheng Jian; Clemens F. Kaminski

We present a numerical study of interactions between dispersive waves (DWs) and solitons during supercontinuum generation in photonic crystal fibers pumped with picosecond laser pulses. We show how the soliton-induced trapping potential evolves along the fiber and affects the dynamics of a DW-soliton pair. Individual frequency components of the DW periodically interact with the soliton resulting in stepwise frequency blue shifts. In contrast, the ensemble blue shifts of all frequency components in the DW appear to be quasi-continuous. The step size of frequency up-conversion and the temporal separation between subsequent soliton-DW interactions are governed by the potential well which confines the soliton-DW pair and which changes in time.


PLOS Biology | 2015

CYK4 Promotes Antiparallel Microtubule Bundling by Optimizing MKLP1 Neck Conformation

Tim Davies; Noriyuki Kodera; Gabriele S. Kaminski Schierle; Eric Rees; Miklós Erdélyi; Clemens F. Kaminski; Toshio Ando; Masanori Mishima

Centralspindlin, a constitutive 2:2 heterotetramer of MKLP1 (a kinesin-6) and the non-motor subunit CYK4, plays important roles in cytokinesis. It is crucial for the formation of central spindle microtubule bundle structure. Its accumulation at the central antiparallel overlap zone is key for recruitment and regulation of downstream cytokinesis factors and for stable anchoring of the plasma membrane at the midbody. Both MKLP1 and CYK4 are required for efficient microtubule bundling. However, the mechanism by which CYK4 contributes to this is unclear. Here we performed structural and functional analyses of centralspindlin using high-speed atomic force microscopy, Fӧrster resonance energy transfer analysis, and in vitro reconstitution. Our data reveal that CYK4 binds to a globular mass in the atypically long MKLP1 neck domain between the catalytic core and the coiled coil and thereby reconfigures the two motor domains in the MKLP1 dimer to be suitable for antiparallel microtubule bundling. Our work provides insights into the microtubule bundling during cytokinesis and into the working mechanisms of the kinesins with non-canonical neck structures.

Collaboration


Dive into the Eric Rees's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Manton

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Essaki

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Alex E. Knight

National Physical Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge