Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Rullman is active.

Publication


Featured researches published by Eric Rullman.


Journal of Applied Physiology | 2009

Endurance exercise activates matrix metalloproteinases in human skeletal muscle

Eric Rullman; Jessica Norrbom; Anna Strömberg; Dick Wågsäter; Helene Rundqvist; Tara L. Haas; Thomas Gustafsson

In the present study, the effect of exercise training on the expression and activity of matrix metalloproteinases (MMPs) in the human skeletal muscle was investigated. Ten subjects exercised one leg for 45 min with restricted blood flow and then exercised the other leg at the same absolute workload with unrestricted blood flow. The exercises were conducted four times per week for 5 wk. Biopsies were taken from the vastus lateralis muscles of both legs at rest before the training period, after 10 days and 5 wk of training, and 2 h after the first exercise bout for analysis of MMP and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA, enzyme activity, and protein expression. Levels of MMP-2, MMP-14, and TIMP-1 mRNA in muscle tissue increased after 10 days of training regardless of blood flow condition. MMP-2 mRNA level in laser-dissected myofibers and MMP-2 activity in whole muscle increased with training. The level of MMP-9 mRNA and activity increased after the first bout of exercise. Although MMP-9 mRNA levels appeared to be very low, the activity of MMP-9 after a single bout of exercise was similar to that of MMP-2 after 10 days of exercise. MMP-2 and MMP-9 protein was both present throughout the extracellular matrix of the muscle, both around fibers and capillaries, but MMP-2 was also present within the skeletal muscle fibers. These results show that MMPs are activated in skeletal muscle in nonpathological conditions such as voluntary exercise. The expression and time pattern indicate differences between the MMPs in regards of production sites as well as in the regulating mechanism.


Genome Biology | 2015

A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status

Sanjana Sood; Iain J. Gallagher; Katie Lunnon; Eric Rullman; Aoife Keohane; Hannah Crossland; Bethan E. Phillips; Tommy Cederholm; Thomas E. Jensen; Luc J. C. van Loon; Lars Lannfelt; William E. Kraus; Philip J. Atherton; Robert Howard; Thomas Gustafsson; Angela Hodges; James A. Timmons

BackgroundDiagnostics of the human ageing process may help predict future healthcare needs or guide preventative measures for tackling diseases of older age. We take a transcriptomics approach to build the first reproducible multi-tissue RNA expression signature by gene-chip profiling tissue from sedentary normal subjects who reached 65 years of age in good health.ResultsOne hundred and fifty probe-sets form an accurate classifier of young versus older muscle tissue and this healthy ageing RNA classifier performed consistently in independent cohorts of human muscle, skin and brain tissue (n = 594, AUC = 0.83–0.96) and thus represents a biomarker for biological age. Using the Uppsala Longitudinal Study of Adult Men birth-cohort (n = 108) we demonstrate that the RNA classifier is insensitive to confounding lifestyle biomarkers, while greater gene score at age 70 years is independently associated with better renal function at age 82 years and longevity. The gene score is ‘up-regulated’ in healthy human hippocampus with age, and when applied to blood RNA profiles from two large independent age-matched dementia case–control data sets (n = 717) the healthy controls have significantly greater gene scores than those with cognitive impairment. Alone, or when combined with our previously described prototype Alzheimer disease (AD) RNA ‘disease signature’, the healthy ageing RNA classifier is diagnostic for AD.ConclusionsWe identify a novel and statistically robust multi-tissue RNA signature of human healthy ageing that can act as a diagnostic of future health, using only a peripheral blood sample. This RNA signature has great potential to assist research aimed at finding treatments for and/or management of AD and other ageing-related conditions.


European Journal of Endocrinology | 2009

Activation of the erythropoietin receptor in human skeletal muscle.

Helene Rundqvist; Eric Rullman; Carl Johan Sundberg; Helene Fischer; Katarina Eisleitner; Marcus Ståhlberg; Patrik Sundblad; Eva Jansson; Thomas Gustafsson

OBJECTIVE Erythropoietin receptor (EPOR) expression in non-hematological tissues has been shown to be activated by locally produced and/or systemically delivered EPO. Improved oxygen homeostasis, a well-established consequence of EPOR activation, is very important for human skeletal muscle performance. In the present study we investigate whether human skeletal muscle fibers and satellite cells express EPOR and if it is activated by exercise. DESIGN AND METHODS Ten healthy males performed 65 min of cycle exercise. Biopsies were obtained from the vastus lateralis muscle and femoral arterio-venous differences in EPO concentrations were estimated. RESULTS The EPOR protein was localized in areas corresponding to the sarcolemma and capillaries. Laser dissection identified EPOR mRNA expression in muscle fibers. Also, EPOR mRNA and protein were both detected in human skeletal muscle satellite cells. In the initial part of the exercise bout there was a release of EPO from the exercising leg to the circulation, possibly corresponding to an increased bioavailability of EPO. After exercise, EPOR mRNA and EPOR-associated JAK2 phosphorylation were increased. CONCLUSIONS Interaction with JAK2 is required for EPOR signaling and the increase found in phosphorylation is therefore closely linked to the activation of EPOR. The receptor activation by acute exercise suggests that signaling through EPOR is involved in exercise-induced skeletal muscle adaptation, thus extending the biological role of EPO into the skeletal muscle.


PLOS ONE | 2013

Effect of Acute Exercise on Prostate Cancer Cell Growth

Helene Rundqvist; Martin Augsten; Anna Strömberg; Eric Rullman; Sara Mijwel; Pedram Kharaziha; Theocharis Panaretakis; Thomas Gustafsson; Arne Östman

Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum) and after completed exercise (exercise serum). The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.


Endocrinology | 2016

Evidence for Vitamin D Receptor Expression and Direct Effects of 1α,25(OH)2D3 in Human Skeletal Muscle Precursor Cells

Karl Olsson; Amarjit Saini; Anna Strömberg; Seher Alam; Mats Lilja; Eric Rullman; Thomas Gustafsson

Presence of the vitamin D receptor and direct effects of vitamin D on the proliferation and differentiation of muscle precursor cells have been demonstrated in animal models. However, the effects and mechanisms of vitamin D actions in human skeletal muscle, and the presence of the vitamin D receptor in human adult skeletal muscle, remain to be established. Here, we investigated the role of vitamin D in human muscle cells at various stages of differentiation. We demonstrate that the components of the vitamin D-endocrine system are readily detected in human muscle precursor cells but are low to nondetectable in adult skeletal muscle and that human muscle cells lack the ability to convert the inactive vitamin D-metabolite 25-hydroxy-vitamin D3 to the active 1α,25-dihydroxy-vitamin D3 (1α,25(OH)2D3). In addition, we show that 1α,25(OH)2D3 inhibits myoblast proliferation and differentiation by altering the expression of cell cycle regulators and myogenic regulatory factors, with associated changes in forkhead box O3 and Notch signaling pathways. The present data add novel information regarding the direct effects of vitamin D in human skeletal muscle and provide functional and mechanistic insight to the regulation of myoblast cell fate decisions by 1α,25(OH)2D3.


Diabetes | 2011

Endothelin-1 Reduces Glucose Uptake in Human Skeletal Muscle In Vivo and In Vitro

Alexey Shemyakin; Firoozeh Salehzadeh; Daniella E. Duque-Guimaraes; Felix Böhm; Eric Rullman; Thomas Gustafsson; John Pernow; Anna Krook

OBJECTIVE Endothelin (ET)-1 is a vasoconstrictor and proinflammatory peptide that may interfere with glucose uptake. Our objective was to investigate whether exogenous ET-1 affects glucose uptake in the forearm of individuals with insulin resistance and in cultured human skeletal muscle cells. RESEARCH DESIGN AND METHODS Nine male subjects (aged 61 ± 3 years) with insulin resistance (M value <5.5 mg/kg/min or a homeostasis model assessment of insulin resistance index >2.5) participated in a protocol using saline infusion followed by ET-1 infusion (20 pmol/min) for 2 h into the brachial artery. Forearm blood flow (FBF), endothelium-dependent vasodilatation, and endothelium-independent vasodilatation were assessed. Molecular signaling and glucose uptake were determined in cultured skeletal muscle cells. RESULTS ET-1 decreased forearm glucose uptake (FGU) by 39% (P < 0.05) after the 2-h infusion. ET-1 reduced basal FBF by 36% after the 2-h infusion (P < 0.05) and impaired both endothelium-dependent vasodilatation (P < 0.01) and endothelium-independent vasodilatation (P < 0.05). ETA and ETB receptor expression was detected on cultured skeletal muscle cells. One-hour ET-1 incubation increased glucose uptake in cells from healthy control subjects but not from type 2 diabetic patients. Incubation with ET-1 for 24 h reduced glucose uptake in cells from healthy subjects. ET-1 decreased insulin-stimulated Akt phosphorylation and increased phosphorylation of insulin receptor substrate-1 serine 636. CONCLUSIONS ET-1 not only induces vascular dysfunction but also acutely impairs FGU in individuals with insulin resistance and in skeletal muscle cells from type 2 diabetic subjects. These findings suggest that ET-1 may contribute to the development of insulin resistance in skeletal muscle in humans.


Journal of Heart and Lung Transplantation | 2013

Modifications of skeletal muscle ryanodine receptor type 1 and exercise intolerance in heart failure.

Eric Rullman; Daniel C. Andersson; Michael Melin; Steven Reiken; Donna Mancini; Andrew R. Marks; Lars H. Lund; Thomas Gustafsson

BACKGROUND In experimental heart failure animal models, remodeling of skeletal and cardiac muscle ryanodine receptors (RyR), including phosphorylation, S-nitrosylation and oxidation, have been reported to contribute to pathologic Ca2+ release, impaired muscle function and fatigue. However, it is not known whether similar remodeling of RyR1 in skeletal muscle occurs in patients with heart failure, and if this is associated with impairment of physical activity. METHODS We studied 8 sedentary patients with New York Heart Association (NYHA) Class III heart failure and 7 age-matched, healthy, but sedentary controls. All heart failure patients had NYHA Class III and peak VO2, echocardiography and NT-proBNP data consistent with moderate to severe heart failure. The age-matched controls included were allowed hypertension but sub-clinical heart failure was to have been ruled out by normal peak VO2, echocardiography and NT-proBNP. RESULTS Exercise capacity (VO2max) differed by almost 2-fold between heart failure patients and age-matched controls. Compared with controls, skeletal muscle RyR1 in heart failure patients was excessively phosphorylated, S-nitrosylated and oxidized. Furthermore, RyR1 from heart failure patients was depleted of its stabilizing protein FK 506-binding protein 12 (FKBP12, or calstabin1). CONCLUSIONS For the first time we show that skeletal muscle RyR1 from human heart failure is post-translationally modified, which corroborates previous data from experimental animal studies. This indicates pathologic Ca2+ release as a potential mechanism behind skeletal muscle weakness and impaired exercise tolerance in patients with heart failure and suggests a potential target for pharmacologic intervention.


Physiological Reports | 2016

PlanHab (Planetary Habitat Simulation): the combined and separate effects of 21 days bed rest and hypoxic confinement on human skeletal muscle miRNA expression.

Eric Rullman; Igor B. Mekjavic; H. Fischer; Ola Eiken

The study concerns effects of 21 days of sustained bedrest and hypoxia, alone and in combination, on skeletal muscle microRNA (miRNA) expression. It is expected that astronauts undertaking long‐duration missions will be exposed not only to microgravity but also to a hypoxic environment. The molecular machinery underlying microgravity‐induced alterations in skeletal muscle structure and function is still largely unknown. One possible regulatory mechanism is altered expression of miRNAs, a group of noncoding RNAs which down‐regulate many different target genes through increased degradation or translation of their messenger RNA. Thirteen healthy men underwent three 21‐day interventions, interspersed by 4‐month washout periods: horizontal bedrest in normoxia, bedrest in hypoxia, ambulation in hypoxia. The level of hypoxia corresponded to 4000 m altitude. miRNAs from v. lateralis muscle biopsies were analyzed using a microarray covering ≈4000 human miRNAs. Sixteen mature miRNAs were up‐regulated and three down‐regulated after bedrest. The magnitudes of these changes were small and a large portion of the miRNAs affected by bedrest was also differentially expressed after washout periods. In fact, the number of differentially expressed probe sets over time was substantially larger than what could be detected after bedrest. Still, the majority of the miRNAs (let‐7, miR‐15, miR‐25, miR‐199, miR‐133) that were differentially expressed following bedrest, belong to miRNA families previously reported in the context of muscle physiology, in particular to respond to changes in mechanical loading. Since only minor changes in miRNA expression could be detected after bedrest, our data indicate miRNA to play only a minor role in the substantial change in muscle phenotype seen with unloading.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

CX3CL1—a macrophage chemoattractant induced by a single bout of exercise in human skeletal muscle

Anna Strömberg; Karl Olsson; Jacomijn P. Dijksterhuis; Eric Rullman; Gunnar Schulte; Thomas Gustafsson

Monocytes/macrophages (MOs/MΦs) are suggested to be crucial for skeletal muscle repair and remodeling. This has been attributed to their proangiogenic potential, secretion of growth factors, and clearance of tissue debris. Skeletal muscle injury increases the number of MΦs in the tissue, and their importance for muscle regeneration has been supported by studies demonstrating that depletion of MOs/MΦs greatly impairs repair after muscle injury. Whether noninjurious exercise leads to induced expression of chemoattractants for MOs/MΦs is poorly investigated. To this end, we analyzed the expression of CX3CL1 (fractalkine), CCL2 (MCP-1), and CCL22 (MDC) in human skeletal muscle after a bout of exercise, all of which are established MO/MΦ chemotactic factors that are expressed by human myoblasts. Muscle biopsies from the musculus vastus lateralis were obtained up to 24 h after 1 h of cycle exercise in healthy individuals and in age-matched nonexercised controls. CX3CL1 increased at both the mRNA and protein level in human skeletal muscle after one bout of exercise. It was not possible to distinguish changes in CCL2 or CCL22 mRNA levels between biopsy vs. exercise effects, and the expression of CCL22 was very low. CX3CL1 mainly localized to the skeletal muscle endothelium, and it increased in human umbilical vein endothelial cells stimulated with tissue fluid from exercised muscle. CX3CL1 increased the expression of proinflammatory and proangiogenic factors in THP-1 monocytes (a human acute monocytic leukemia cell line) and in human primary myoblasts and myotubes. Altogether, this suggests that CX3CL1 participates in cross-talk mechanisms between endothelium and other muscle tissue cells and may promote a shift in the microenvironment toward a more regenerative milieu.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Aerobic exercise augments muscle transcriptome profile of resistance exercise

Tommy R. Lundberg; Rodrigo Fernandez-Gonzalo; Per A. Tesch; Eric Rullman; Thomas Gustafsson

Recent reports suggest that aerobic exercise may boost the hypertrophic response to short-term resistance training. This study explored the effects of an acute aerobic exercise bout on the transcriptional response to subsequent resistance exercise. Ten moderately trained men performed ∼45 min cycling on one leg followed by 4 × 7 maximal knee extensions for each leg, 15 min later. Thus, one limb performed aerobic and resistance exercise (AE + RE) while the opposing leg did resistance exercise only (RE). Biopsies were obtained from the vastus lateralis muscle of each leg 3 h after the resistance exercise bout. Using DNA microarray, we analyzed differences [≥1.5-fold, false discovery rate (FDR) ≤10%] in gene expression profiles for the two modes of exercise. There were 176 genes up (127)- or downregulated (49) by AE + RE compared with RE. Among the most significant differentially expressed genes were established markers for muscle growth and oxidative capacity, novel cytokines, transcription factors, and micro-RNAs (miRNAs). The most enriched functional categories were those linked to carbohydrate metabolism and transcriptional regulation. Upstream analysis revealed that vascular endothelial growth factor, cAMP-response element-binding protein, Tet methylcytosine dioxygenase, and mammalian target of rapamycin were regulators highly activated by AE + RE, whereas JnK, NF-κβ, MAPK, and several miRNAs were inhibited. Thus, aerobic exercise alters the skeletal muscle transcriptional signature of resistance exercise to initiate important gene programs promoting both myofiber growth and improved oxidative capacity. These results provide novel insight into human muscle adaptations to diverse exercise modes and offer the very first genomic basis explaining how aerobic exercise may augment, rather than compromise, muscle growth induced by resistance exercise.

Collaboration


Dive into the Eric Rullman's collaboration.

Top Co-Authors

Avatar

Thomas Gustafsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anna Strömberg

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Jansson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Karl Olsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael Melin

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Mats Lilja

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Tommy R. Lundberg

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Adrian Gonon

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge