Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric S. Edgerton is active.

Publication


Featured researches published by Eric S. Edgerton.


Journal of The Air & Waste Management Association | 2003

Source Identification of Atlanta Aerosol by Positive Matrix Factorization

Eugene Kim; Philip K. Hopke; Eric S. Edgerton

Abstract Data characterizing daily integrated particulate matter (PM) samples collected at the Jefferson Street monitoring site in Atlanta, GA, were analyzed through the application of a bilinear positive matrix factorization (PMF) model. A total of 662 samples and 26 variables were used for fine particle (particles ≤2.5 µm in aerodynamic diameter) samples (PM2.5 ), and 685 samples and 15 variables were used for coarse particle (particles between 2.5 and 10 µm in aerodynamic diameter) samples (PM10–2.5 ). Measured PM mass concentrations and compositional data were used as independent variables. To obtain the quantitative contributions for each source, the factors were normalized using PMF-apportioned mass concentrations. For fine particle data, eight sources were identified: SO4 2−-rich secondary aerosol (56%), motor vehicle (22%), wood smoke (11%), NO3 −-rich secondary aerosol (7%), mixed source of cement kiln and organic carbon (OC) (2%), airborne soil (1%), metal recycling facility (0.5%), and mixed source of bus station and metal processing (0.3%). The SO4 2−-rich and NO3 −-rich secondary aerosols were associated with NH4 +. The SO4 2−-rich secondary aerosols also included OC. For the coarse particle data, five sources contributed to the observed mass: airborne soil (60%), NO3 −-rich secondary aerosol (16%), SO4 2−-rich secondary aerosol (12%), cement kiln (11%), and metal recycling facility (1%). Conditional probability functions were computed using surface wind data and identified mass contributions from each source. The results of this analysis agreed well with the locations of known local point sources.


Journal of The Air & Waste Management Association | 2003

The Southeastern Aerosol Research and Characterization Study: Part 1—Overview

D. Alan Hansen; Eric S. Edgerton; Benjamin E. Hartsell; John Jansen; Navaneethakrishnan Kandasamy; George M. Hidy; Charles L. Blanchard

Abstract This paper presents an overview of a major, long-term program for tropospheric gas and aerosol research in the southeastern United States. Building on three existing ozone (O3)-focused research sites begun in mid-1992, the Southeastern Aerosol Research and Characterization Study (SEARCH) was initiated in mid-1998 as a 7-year observation and research program with a broader focus including aerosols and an expanded geographical coverage in the Southeast. The monitoring network comprises four urban-rural (or urban-suburban) site pairs at locations along the coast of the Gulf of Mexico and inland, including two moderately sized and two major urban areas (Pensacola, FL; Gulfport, MS; Atlanta, GA; and Birmingham, AL). The sites are equipped with an extensive suite of instruments for measuring particulate matter (PM), gases relevant to secondary O3 and the production of secondary aerosol particles, and surface meteorology. The measurements taken to date have added substantially to the knowledge about the temporal behavior and geographic variability of tropospheric aerosols in the Southeast. Details are presented in four papers to follow.


Environmental Science & Technology | 2012

Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

Ying Hsuan Lin; Zhenfa Zhang; Kenneth S. Docherty; Haofei Zhang; Sri Hapsari Budisulistiorini; Caitlin L. Rubitschun; Stephanie L. Shaw; Eladio M. Knipping; Eric S. Edgerton; Tadeusz E. Kleindienst; Avram Gold; Jason D. Surratt

Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NO(x) conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (>99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7-6.4% for β-IEPOX and 3.4-5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C(5)-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NO(x), isoprene-dominated regions influenced by the presence of acidic aerosols.


Atmospheric Environment | 1997

Dry deposition calculations for the clean air status and trends network

J.F. Clarke; Eric S. Edgerton; B.E. Martin

The National Dry Deposition Network (NDDN) was established in 1986 to document the magnitude, spatial variability, and trends in dry deposition across the United States. Currently, the network operates as a component of the Clean Air Status and Trends Network (CASTNet). Dry deposition is not measured directly in CASTNet, but is determined by an inferential approach (i.e. fluxes are calculated as the product of measured ambient concentration and a modeled deposition velocity). Chemical species include ozone, sulfate, nitrate, ammonium, sulfur dioxide, and nitric acid. The temporal resolution for the ambient concentration measurements and dry deposition flux calculations is hourly for ozone and weekly for the other species. This paper describes the 50-station CASTNet dry deposition network, discusses dry deposition calculation procedures and presents dry deposition data for sulfur dioxide and nitric acid for 1991. Sources of uncertainty in dry deposition estimates are also discussed.


Environmental Health Perspectives | 2006

Lung toxicity of ambient particulate matter from southeastern U.S. sites with different contributing sources : Relationships between composition and effects

JeanClare Seagrave; Jacob D. McDonald; Edward J. Bedrick; Eric S. Edgerton; Andrew P. Gigliotti; John Jansen; Lin Ke; Luke P. Naeher; Steven K. Seilkop; Mei Zheng; Joe L. Mauderly

Background Exposure to air pollution and, more specifically, particulate matter (PM) is associated with adverse health effects. However, the specific PM characteristics responsible for biological effects have not been defined. Objectives In this project we examined the composition, sources, and relative toxicity of samples of PM with aerodynamic diameter ≥2.5 μm (PM2.5) collected from sites within the Southeastern Aerosol Research and Characterization (SEARCH) air monitoring network during two seasons. These sites represent four areas with differing sources of PM2.5, including local urban versus regional sources, urban areas with different contributions of transportation and industrial sources, and a site influenced by Gulf of Mexico weather patterns. Methods We collected samples from each site during the winter and summer of 2004 for toxicity testing and for chemical analysis and chemical mass balance–based source apportionment. We also collected PM2.5 downwind of a series of prescribed forest burns. We assessed the toxicity of the samples by instillation into rat lungs and assessed general toxicity, acute cytotoxicity, and inflammation. Statistical dose–response modeling techniques were used to rank the relative toxicity and compare the seasonal differences at each site. Projection-to-latent-surfaces (PLS) techniques examined the relationships among sources, chemical composition, and toxicologic end points. Results and conclusions Urban sites with high contributions from vehicles and industry were most toxic.


Environmental Science & Technology | 2013

Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor

Sri Hapsari Budisulistiorini; Manjula R. Canagaratna; Philip L. Croteau; Wendy J. Marth; Karsten Baumann; Eric S. Edgerton; Stephanie L. Shaw; Eladio M. Knipping; Douglas R. Worsnop; John T. Jayne; Avram Gold; Jason D. Surratt

Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.


Environmental Science & Technology | 2010

Characterization and Quantification of Isoprene-Derived Epoxydiols in Ambient Aerosol in the Southeastern United States

Man Nin Chan; Jason D. Surratt; M. Claeys; Eric S. Edgerton; Roger L. Tanner; Stephanie L. Shaw; Mei Zheng; Eladio M. Knipping; Nathan C. Eddingsaas; Paul O. Wennberg; John H. Seinfeld

Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C(5)-alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from approximately 1 to 24 ng m(-3) in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO(x) conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region.


Journal of The Air & Waste Management Association | 2005

The Southeastern Aerosol Research and Characterization Study: Part II. Filter-Based Measurements of Fine and Coarse Particulate Matter Mass and Composition

Eric S. Edgerton; Benjamin E. Hartsell; Rick Saylor; John J. Jansen; D. Alan Hansen; George M. Hidy

Abstract The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998–1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10–2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999–2003) of filter-based PM2.5 and PM10–2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 µg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 µg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3–7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for ≥60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components (“other”) account for ≥80% of PM10–2.5 mass. Limited data suggest that much of the unidentified mass in PM10–2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and “other.” Annual means for PM2.5 and PM10–2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999–2003 period (10–20% in the case of PM2.5, dominated by 14–20% declines in sulfate and 11–26% declines in OM, and 14–25% in the case of PM10–2.5, dominated by 17–30% declines in MMO and 14–31% declines in “ other”). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.


Journal of The Air & Waste Management Association | 2006

The Southeastern Aerosol Research and Characterization Study, Part 3: Continuous Measurements of Fine Particulate Matter Mass and Composition

Eric S. Edgerton; Benjamin E. Hartsell; Rick D. Saylor; John J. Jansen; D. Alan Hansen; George M. Hidy

Abstract Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 °C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO4 2− via reduction to SO2; (2) NH4 + and NO3 − via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption, (4) total carbon by combustion to CO2, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured “other” category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO2 conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH3 to the formation of ammonium nitrate in particulate matter (PM) is demonstrated.


Geophysical Research Letters | 2015

Biomass burning dominates brown carbon absorption in the rural southeastern United States: Biomass burning dominates brown carbon

Rebecca A. Washenfelder; A. R. Attwood; C. A. Brock; Hongyu Guo; Lu Xu; Rodney J. Weber; Nga L. Ng; Hannah M. Allen; Benjamin Ayres; Karsten Baumann; R. C. Cohen; Danielle C. Draper; Kaitlin C. Duffey; Eric S. Edgerton; Juliane L. Fry; Weiwei Hu; J. L. Jimenez; Brett B. Palm; Paul S. Romer; Elizabeth A. Stone; P. J. Wooldridge; Steven S. Brown

Brown carbon aerosol consists of light-absorbing organic particulate matter with wavelength-dependent absorption. Aerosol optical extinction, absorption, size distributions, and chemical composition were measured in rural Alabama during summer 2013. The field site was well located to examine sources of brown carbon aerosol, with influence by high biogenic organic aerosol concentrations, pollution from two nearby cities, and biomass burning aerosol. We report the optical closure between measured dry aerosol extinction at 365 nm and calculated extinction from composition and size distribution, showing agreement within experiment uncertainties. We find that aerosol optical extinction is dominated by scattering, with single-scattering albedo values of 0.94 ± 0.02. Black carbon aerosol accounts for 91 ± 9% of the total carbonaceous aerosol absorption at 365 nm, while organic aerosol accounts for 9 ± 9%. The majority of brown carbon aerosol mass is associated with biomass burning, with smaller contributions from biogenically derived secondary organic aerosol.

Collaboration


Dive into the Eric S. Edgerton's collaboration.

Top Co-Authors

Avatar

Rodney J. Weber

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Armistead G. Russell

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karsten Baumann

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Stephanie L. Shaw

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jason D. Surratt

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John Jansen

Southern Company Services

View shared research outputs
Top Co-Authors

Avatar

Benjamin E. Hartsell

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Eladio M. Knipping

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge