Eric S. Fischer
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric S. Fischer.
Nature | 2014
Eric S. Fischer; Kerstin Böhm; John R. Lydeard; Haidi Yang; Michael B. Stadler; Simone Cavadini; Jane Nagel; Fabrizio C. Serluca; Vincent Acker; Gondichatnahalli M. Lingaraju; Ritesh Bhanudasji Tichkule; Michael Schebesta; William C. Forrester; Markus Schirle; Ulrich Hassiepen; Johannes Ottl; Marc Hild; Rohan Eric John Beckwith; J. Wade Harper; Jeremy L. Jenkins; Nicolas H. Thomä
In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4–RBX1–DDB1–CRBN (known as CRL4CRBN) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4CRBN. Here we present crystal structures of the DDB1–CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4CRBN and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4CRBN. Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4CRBN while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.
Cell | 2011
Eric S. Fischer; Kerstin Böhm; Syota Matsumoto; Gondichatnahalli M. Lingaraju; Mahamadou Faty; Takeshi Yasuda; Simone Cavadini; Mitsuo Wakasugi; Fumio Hanaoka; Shigenori Iwai; Heinz Gut; Kaoru Sugasawa; Nicolas H. Thomä
The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.
Nature | 2016
Georg Petzold; Eric S. Fischer; Nicolas H. Thomä
Thalidomide and its derivatives, lenalidomide and pomalidomide, are immune modulatory drugs (IMiDs) used in the treatment of haematologic malignancies. IMiDs bind CRBN, the substrate receptor of the CUL4–RBX1–DDB1–CRBN (also known as CRL4CRBN) E3 ubiquitin ligase, and inhibit ubiquitination of endogenous CRL4CRBN substrates. Unexpectedly, IMiDs also repurpose the ligase to target new proteins for degradation. Lenalidomide induces degradation of the lymphoid transcription factors Ikaros and Aiolos (also known as IKZF1 and IKZF3), and casein kinase 1α (CK1α), which contributes to its clinical efficacy in the treatment of multiple myeloma and 5q-deletion associated myelodysplastic syndrome (del(5q) MDS), respectively. How lenalidomide alters the specificity of the ligase to degrade these proteins remains elusive. Here we present the 2.45 Å crystal structure of DDB1–CRBN bound to lenalidomide and CK1α. CRBN and lenalidomide jointly provide the binding interface for a CK1α β-hairpin-loop located in the kinase N-lobe. We show that CK1α binding to CRL4CRBN is strictly dependent on the presence of an IMiD. Binding of IKZF1 to CRBN similarly requires the compound and both, IKZF1 and CK1α, use a related binding mode. Our study provides a mechanistic explanation for the selective efficacy of lenalidomide in del(5q) MDS therapy. We anticipate that high-affinity protein–protein interactions induced by small molecules will provide opportunities for drug development, particularly for targeted protein degradation.
Nature | 2016
Simone Cavadini; Eric S. Fischer; Richard D. Bunker; Alessandro Potenza; Gondichatnahalli M. Lingaraju; Kenneth N. Goldie; Weaam I. Mohamed; Mahamadou Faty; Georg Petzold; Rohan Eric John Beckwith; Ritesh Bhanudasji Tichkule; Ulrich Hassiepen; Wassim Abdulrahman; Radosav S. Pantelic; Syota Matsumoto; Kaoru Sugasawa; Henning Stahlberg; Nicolas H. Thomä
The cullin–RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A–RBX1–DDB1–DDB2 complex (CRL4ADDB2) monitors the genome for ultraviolet-light-induced DNA damage. CRL4ADBB2 is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4ADDB2 and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.
FEBS Letters | 2011
Eric S. Fischer; Gondichatnahalli M. Lingaraju; Kerstin Böhm; Simone Cavadini; Nicolas H. Thomä
The DDB1–DDB2–CUL4–RBX1 complex serves as the primary detection device for UV‐induced lesions in the genome. It simultaneously functions as a CUL4 type E3 ubiquitin ligase. We review the current understanding of this dual function ubiquitin ligase and damage detection complex. The DDB2 damage binding module is merely one of a large family of possible DDB1–CUL4 associated factors (DCAF), most of which are substrate receptors for other DDB1–CUL4 complexes. DDB2 and the Cockayne‐syndrome A protein (CSA) function in nucleotide excision repair, whereas the remaining receptors operate in a wide range of other biological pathways. We will examine the modular architecture of DDB1–CUL4 in complex with DDB2, CSA and CDT2 focusing on shared architectural, targeting and regulatory principles.
Nucleic Acids Research | 2015
Syota Matsumoto; Eric S. Fischer; Takeshi Yasuda; Naoshi Dohmae; Shigenori Iwai; Toshio Mori; Ryotaro Nishi; Ken-ichi Yoshino; Wataru Sakai; Fumio Hanaoka; Nicolas H. Thomä; Kaoru Sugasawa
In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.
Chemistry & Biology | 2017
Hai-Tsang Huang; Dennis Dobrovolsky; Joshiawa Paulk; Guang Yang; Ellen Weisberg; Zainab M. Doctor; Dennis L. Buckley; Joong-Heui Cho; Eunhwa Ko; Jaebong Jang; Kun Shi; Hwan Geun Choi; James D. Griffin; Ying Li; Steven P. Treon; Eric S. Fischer; James E. Bradner; Li Tan; Nathanael S. Gray
Heterobifunctional molecules that recruit E3 ubiquitin ligases, such as cereblon, for targeted protein degradation represent an emerging pharmacological strategy. A major unanswered question is how generally applicable this strategy is to all protein targets. In this study, we designed a multi-kinase degrader by conjugating a highly promiscuous kinase inhibitor with a cereblon-binding ligand, and used quantitative proteomics to discover 28 kinases, including BTK, PTK2, PTK2B, FLT3, AURKA, AURKB, TEC, ULK1, ITK, and nine members of the CDK family, as degradable. This set of kinases is only a fraction of the intracellular targets bound by the degrader, demonstrating that successful degradation requires more than target engagement. The results guided us to develop selective degraders for FLT3 and BTK, with potentials to improve disease treatment. Together, this study demonstrates an efficient approach to triage a gene family of interest to identify readily degradable targets for further studies and pre-clinical developments.
Nature Communications | 2017
Jian An; Charles M. Ponthier; Ragna Sack; Jan Seebacher; Michael B. Stadler; Katherine A Donovan; Eric S. Fischer
Thalidomide and its derivatives lenalidomide and pomalidomide (IMiDs) are effective treatments of haematologic malignancies. It was shown that IMiDs impart gain-of-function properties to the CUL4-RBX1-DDB1-CRBN (CRL4CRBN) ubiquitin ligase that enable binding, ubiquitination and degradation of key therapeutic targets such as IKZF1, IKZF3 and CSNK1A1. While these substrates have been implicated as efficacy targets in multiple myeloma (MM) and 5q deletion associated myelodysplastic syndrome (del(5q)-MDS), other targets likely exist. Using a pulse-chase SILAC mass spectrometry-based proteomics approach, we demonstrate that lenalidomide induces the ubiquitination and degradation of ZFP91. We establish ZFP91 as a bona fide IMiD-dependent CRL4CRBN substrate and further show that ZFP91 harbours a zinc finger (ZnF) motif, related to the IKZF1/3 ZnF, critical for IMiD-dependent CRBN binding. These findings demonstrate that single time point pulse-chase SILAC mass spectrometry-based proteomics (pSILAC MS) is a sensitive approach for target identification of small molecules inducing selective protein degradation.
Chemistry & Biology | 2017
Mei Zeng; Jia Lu; Lianbo Li; Frederic Feru; Chunshan Quan; Thomas W. Gero; Scott B. Ficarro; Yuan Xiong; Chiara Ambrogio; Raymond M. Paranal; Marco Catalano; Jay Shao; Kwok-Kin Wong; Jarrod A. Marto; Eric S. Fischer; Pasi A. Jänne; David Scott; Kenneth D. Westover; Nathanael S. Gray
Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.
Current Opinion in Structural Biology | 2016
Eric S. Fischer; Eunyoung Park; Michael J. Eck; Nicolas H. Thomä
Regulatory protein-protein interactions are ubiquitous in biology, and small molecule protein-protein interaction inhibitors are an important focus in drug discovery. Remarkably little attention has been given to the opposite strategy-stabilization of protein-protein interactions, despite the fact that several well-known therapeutics act through this mechanism. From a structural perspective, we consider representative examples of small molecules that induce or stabilize the association of protein domains to inhibit, or alter, signaling for nuclear hormone, GTPase, kinase, phosphatase, and ubiquitin ligase pathways. These SPLINTS (small-molecule protein ligand interface stabilizers) drive interactions that are in some cases physiologically relevant, and in others entirely adventitious. The diverse structural mechanisms employed suggest approaches for a broader and systematic search for such compounds in drug discovery.