Eric S. Klein
University of Alaska Anchorage
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric S. Klein.
The Holocene | 2014
Julie Loisel; Zicheng Yu; David W. Beilman; Philip Camill; Jukka Alm; Matthew J. Amesbury; David E. Anderson; Sofia Andersson; Christopher Bochicchio; Keith Barber; Lisa R. Belyea; Joan Bunbury; Frank M. Chambers; Dan J. Charman; François De Vleeschouwer; Barbara Fiałkiewicz-Kozieł; Sarah A. Finkelstein; Mariusz Gałka; Michelle Garneau; Dan Hammarlund; William Hinchcliffe; James R. Holmquist; P.D.M. Hughes; Miriam C. Jones; Eric S. Klein; Ulla Kokfelt; Atte Korhola; Peter Kuhry; Alexandre Lamarre; Mariusz Lamentowicz
Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45°N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 ± 3% (standard deviation) for Sphagnum peat, 51 ± 2% for non-Sphagnum peat, and at 49 ± 2% overall. Dry bulk density averaged 0.12 ± 0.07 g/cm3, organic matter bulk density averaged 0.11 ± 0.05 g/cm3, and total carbon content in peat averaged 47 ± 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 ± 2 (standard error of mean) g C/m2/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25–28 g C/m2/yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu.
Journal of Geophysical Research | 2016
Claire C. Treat; Miriam C. Jones; Philip Camill; Angela V. Gallego-Sala; Michelle Garneau; Jennifer W. Harden; Gustaf Hugelius; Eric S. Klein; Ulla Kokfelt; Peter Kuhry; Julie Loisel; Paul Mathijssen; Jonathan A. O'Donnell; Pirita Oksanen; Tiina Ronkainen; A. B. K. Sannel; Julie Talbot; Charles Tarnocai; Minna Väliranta
Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23g C m(-2)yr(-1)) than in permafrost-free bogs (18g C m(-2)yr(-1)) and were lowest in boreal permafrost peatlands (14g C m(-2)yr(-1)). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.
Scientific Reports | 2015
Eric S. Klein; J. E. Cherry; J. Young; David Noone; A. J. Leffler; Jeffrey M. Welker
Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help explain past changes to the Arctic water cycle. Here we present continuous measurements of water vapor isotope ratios (δ18O, δ2H, d-excess) in Arctic Alaska from a 2013 cyclone. This cyclone resulted in a sharp d-excess decrease and disproportional δ18O enrichment, indicative of a higher humidity open Arctic Ocean water vapor source. Past transitions to warmer climates inferred from Greenland ice core records also reveal sharp decreases in d-excess, hypothesized to represent reduced sea ice extent and an increase in oceanic moisture source to Greenland Ice Sheet precipitation. Thus, measurements of water vapor isotope ratios during an Arctic cyclone provide a critical processed-based explanation, and the first direct confirmation, of relationships previously assumed to govern water isotope ratios during sea ice retreat and increased input of northern ocean moisture into the Arctic water cycle.
Oecologia | 2016
A. Joshua Leffler; Eric S. Klein; Steven F. Oberbauer; Jeffrey M. Welker
Climate change is expected to increase summer temperature and winter precipitation throughout the Arctic. The long-term implications of these changes for plant species composition, plant function, and ecosystem processes are difficult to predict. We report on the influence of enhanced snow depth and warmer summer temperature following 20 years of an ITEX experimental manipulation at Toolik Lake, Alaska. Winter snow depth was increased using snow fences and warming was accomplished during summer using passive open-top chambers. One of the most important consequences of these experimental treatments was an increase in active layer depth and rate of thaw, which has led to deeper drainage and lower soil moisture content. Vegetation concomitantly shifted from a relatively wet system with high cover of the sedge Eriophorum vaginatum to a drier system, dominated by deciduous shrubs including Betula nana and Salix pulchra. At the individual plant level, we observed higher leaf nitrogen concentration associated with warmer temperatures and increased snow in S. pulchra and B. nana, but high leaf nitrogen concentration did not lead to higher rates of net photosynthesis. At the ecosystem level, we observed higher GPP and NEE in response to summer warming. Our results suggest that deeper snow has a cascading set of biophysical consequences that include a deeper active layer that leads to altered species composition, greater leaf nitrogen concentration, and higher ecosystem-level carbon uptake.
Scientific Reports | 2016
Tamir Puntsag; Myron J. Mitchell; John Campbell; Eric S. Klein; Gene E. Likens; Jeffrey M. Welker
Altered atmospheric circulation, reductions in Arctic sea ice, ocean warming, and changes in evaporation and transpiration are driving changes in the global hydrologic cycle. Precipitation isotopic (δ18O and δ2H) measurements can help provide a mechanistic understanding of hydrologic change at global and regional scales. To study the changing water cycle in the northeastern US, we examined the longest (1968–2010) record of precipitation isotope values, collected at the Hubbard Brook Experimental Forest in New Hampshire, US (43o56′N, 71o45′W). We found a significant reduction in δ18O and δ2H values over the 43-year record, coupled with a significant increase in d-excess values. This gradual reduction in δ18O and δ2H values unexpectedly occurred during a period of regional warming. We provide evidence that these changes are governed by the interactions among the Atlantic Multidecadal Oscillation, loss of Arctic sea ice, the fluctuating jet stream, and regular incursions of polar air into the northeastern US.
Nature Climate Change | 2018
Angela V. Gallego-Sala; Dan J. Charman; Simon Brewer; Susan E. Page; I. Colin Prentice; Pierre Friedlingstein; Steve Moreton; Matthew J. Amesbury; David W. Beilman; Svante Björck; Tatiana Blyakharchuk; Christopher Bochicchio; Robert K. Booth; Joan Bunbury; Philip Camill; Donna Carless; Rodney A. Chimner; Michael Clifford; Elizabeth Cressey; Colin Courtney-Mustaphi; François De Vleeschouwer; Rixt de Jong; Barbara Fiałkiewicz-Kozieł; Sarah A. Finkelstein; Michelle Garneau; Esther N. Githumbi; John Hribjlan; James R. Holmquist; P.D.M. Hughes; Chris D. Jones
The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around ad 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.Analysis of peatland carbon accumulation over the last millennium and its association with global-scale climate space indicates an ongoing carbon sink into the future, but with decreasing strength as conditions warm.
Geophysical Research Letters | 2016
Eric S. Klein; Jeffrey M. Welker
A warming climate results in sea ice loss and impacts to the Arctic water cycle. The water isotope parameter deuterium excess, a moisture source proxy, can serve as a tracer to help understand hydrological changes due to sea ice loss. However, unlocking the sea ice change signal of isotopes from ice cores requires understanding how sea ice changes impact deuterium excess, which is unknown. Here we present the first isotope data linking a gradient of sea ice extents to oceanic water vapor deuterium excess values. Initial loss of sea ice extent leads to lower deuterium excess moisture sources, and then values progressively increase with further ice loss. Our new process-based interpretation suggests that past rapid (1–3 years) Greenland ice core changes in deuterium excess during warming might not be the result of abrupt atmospheric circulation shifts, but rather gradual loss of sea ice extent at northern latitude moisture sources.
Canadian Journal of Forest Research | 2011
Eric S. Klein; Edward E. Berg; Roman DialR. Dial
Gracz (2011, Can. J. For. Res. 41: 425-428) proposes that the Good Friday earthquake of 1964 caused falling lake levels and drying wetlands on Alaskas Northern Kenai Lowlands (NKL). His hypothesis states that the earthquake in- creased hydraulic conductivity by fracturing a leaky confining layer, accelerating drainage of surface water into regional aquifers. We counter that a single model of draining does not apply across the heterogeneity of geomorphology and soils on the NKL. In particular, the NKLs glacial history precludes uniform application of a subsurface hydrologic model for lake draining and the nature of peat-based wetlands precludes its application to wetland drying. Instead, small, yet cumula- tive, climatic reductions in moisture surplus explain both observed lake level declines and vegetation changes. Moreover, and unlike a climatic hypothesis, a seismic hypothesis fails to explain lake drying elsewhere in Alaska. Although it is likely that the earthquake influenced some hydrologic features in the NKL, it is unlikely that a single hydrologic model based on a simple mechanical cause, e.g., downward drainage, adequately explains the changes observed across the whole NKL. Conversely, we maintain that the uniformity of the vegetation response seen across different landscapes, including wetlands, forests, and alpine areas, throughout the state of Alaska strongly supports a climatic hypothesis.
Canadian Journal of Forest Research | 2005
Eric S. Klein; Edward E. Berg; Roman J. Dial
Quaternary Science Reviews | 2016
Eric S. Klein; M. Nolan; Joseph R. McConnell; M. Sigl; J. E. Cherry; J. Young; Jeffrey M. Welker