Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric S. Marr is active.

Publication


Featured researches published by Eric S. Marr.


Cancer Research | 2008

Antitumor Activity and Pharmacology of a Selective Focal Adhesion Kinase Inhibitor, PF-562,271

Walter Gregory Roberts; Ethan Ung; Pamela Whalen; Beth Cooper; Catherine A. Hulford; Christofer Autry; Daniel T. Richter; Earling Emerson; Jing Lin; John Charles Kath; Kevin Coleman; Lili Yao; Luis Martinez-Alsina; Marianne Lorenzen; Martin A. Berliner; Michael Joseph Luzzio; Nandini Chaturbhai Patel; Erika Schmitt; Susan Deborah Lagreca; Jitesh P. Jani; Matt Wessel; Eric S. Marr; Matt Griffor; Felix Vajdos

Cancer cells are characterized by the ability to grow in an anchorage-independent manner. The activity of the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is thought to contribute to this phenotype. FAK localizes in focal adhesion plaques and has a role as a scaffolding and signaling protein for other adhesion molecules. Recent studies show a strong correlation between increased FAK expression and phosphorylation status and the invasive phenotype of aggressive human tumors. PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, respectively. Additionally, PF-562,271 displayed robust inhibition in an inducible cell-based assay measuring phospho-FAK with an IC(50) of 5 nmol/L. PF-562,271 was evaluated against multiple kinases and displays >100x selectivity against a long list of nontarget kinases. PF-562,271 inhibits FAK phosphorylation in vivo in a dose-dependent fashion (calculated EC(50) of 93 ng/mL, total) after p.o. administration to tumor-bearing mice. In vivo inhibition of FAK phosphorylation (>50%) was sustained for >4 hours with a single p.o. dose of 33 mg/kg. Antitumor efficacy and regressions were observed in multiple human s.c. xenograft models. No weight loss, morbidity, or mortality were observed in any in vivo experiment. Tumor growth inhibition was dose and drug exposure dependent. Taken together, these data show that kinase inhibition with an ATP-competitive small molecule inhibitor of FAK decreases the phospho-status in vivo, resulting in robust antitumor activity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa

Seungil Han; Richard P. Zaniewski; Eric S. Marr; Brian M. Lacey; Andrew P. Tomaras; Artem G. Evdokimov; J. Richard Miller; Veerabahu Shanmugasundaram

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes nosocomial infections for which there are limited treatment options. Penicillin-binding protein PBP3, a key therapeutic target, is an essential enzyme responsible for the final steps of peptidoglycan synthesis and is covalently inactivated by β-lactam antibiotics. Here we disclose the first high resolution cocrystal structures of the P. aeruginosa PBP3 with both novel and marketed β-lactams. These structures reveal a conformational rearrangement of Tyr532 and Phe533 and a ligand-induced conformational change of Tyr409 and Arg489. The well-known affinity of the monobactam aztreonam for P. aeruginosa PBP3 is due to a distinct hydrophobic aromatic wall composed of Tyr503, Tyr532, and Phe533 interacting with the gem-dimethyl group. The structure of MC-1, a new siderophore-conjugated monocarbam complexed with PBP3 provides molecular insights for lead optimization. Importantly, we have identified a novel conformation that is distinct to the high-molecular-weight class B PBP subfamily, which is identifiable by common features such as a hydrophobic aromatic wall formed by Tyr503, Tyr532, and Phe533 and the structural flexibility of Tyr409 flanked by two glycine residues. This is also the first example of a siderophore-conjugated triazolone-linked monocarbam complexed with any PBP. Energetic analysis of tightly and loosely held computed hydration sites indicates protein desolvation effects contribute significantly to PBP3 binding, and analysis of hydration site energies allows rank ordering of the second-order acylation rate constants. Taken together, these structural, biochemical, and computational studies provide a molecular basis for recognition of P. aeruginosa PBP3 and open avenues for future design of inhibitors of this class of PBPs.


Journal of Medicinal Chemistry | 2009

Identification of a Brain Penetrant PDE9A Inhibitor Utilizing Prospective Design and Chemical Enablement as a Rapid Lead Optimization Strategy

Patrick Robert Verhoest; Caroline Proulx-Lafrance; Michael Corman; Lois K. Chenard; Christopher John Helal; Xinjun Hou; Robin J. Kleiman; Shenping Liu; Eric S. Marr; Frank S. Menniti; Christopher J. Schmidt; Michelle Vanase-Frawley; Anne W. Schmidt; Robert Williams; Frederick R. Nelson; Kari R. Fonseca; Spiros Liras

By use of chemical enablement and prospective design, a novel series of selective, brain penetrant PDE9A inhibitors have been identified that are capable of producing in vivo elevations of brain cGMP.


Nature Communications | 2013

Crystal structures of interleukin 17A and its complex with IL-17 receptor A

Shenping Liu; Xi Song; Boris A. Chrunyk; Suman Shanker; Lise R. Hoth; Eric S. Marr; Matthew C. Griffor

The constituent polypeptides of the interleukin-17 family form six different homodimeric cytokines (IL-17A-F) and the heterodimeric IL-17A/F. Their interactions with IL-17 receptors A-E (IL-17RA-E) mediate host defenses while also contributing to inflammatory and autoimmune responses. IL-17A and IL-17F both preferentially engage a receptor complex containing one molecule of IL-17RA and one molecule of IL-17RC. More generally, IL-17RA appears to be a shared receptor that pairs with other members of its family to allow signaling of different IL-17 cytokines. Here we report crystal structures of homodimeric IL-17A and its complex with IL-17RA. Binding to IL-17RA at one side of the IL-17A molecule induces a conformational change in the second, symmetry-related receptor site of IL-17A. This change favors, and is sufficient to account for, the selection of a different receptor polypeptide to complete the cytokine-receptor complex. The structural results are supported by biophysical studies with IL-17A variants produced by site-directed mutagenesis.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and structure based optimization of novel Akt inhibitors

Blaise Lippa; Gonghua Pan; Matthew Corbett; Chao Li; Goss Stryker Kauffman; Jayvardhan Pandit; Shaughnessy Robinson; Liuqing Wei; Ekaterina Kozina; Eric S. Marr; Gary Borzillo; Elisabeth Knauth; Elsa G. Barbacci-Tobin; Patrick W. Vincent; Merin Troutman; Deborah A. Baker; Francis Rajamohan; Shefali Kakar; Tracey Clark; Joel Morris

Based on a high throughput screening hit, pyrrolopyrimidine inhibitors of the Akt kinase are explored. X-ray co-crystal structures of two lead series results in the understanding of key binding interactions, the design of new lead series, and enhanced potency. The syntheses of these series and their biological activities are described. Spiroindoline 13j is found to have an Akt1 kinase IC(50) of 2.4+/-0.6 nM, Akt cell potency of 50+/-19 nM, and provides 68% inhibition of tumor growth in a mouse xenograft model (50 mg/kg, qd, po).


Journal of Medicinal Chemistry | 2011

Use of structure-based design to discover a potent, selective, in vivo active phosphodiesterase 10A inhibitor lead series for the treatment of schizophrenia.

Christopher John Helal; Zhijun Kang; Xinjun Hou; Jayvardhan Pandit; Thomas A. Chappie; John M. Humphrey; Eric S. Marr; Kimberly F. Fennell; Lois K. Chenard; Carol B. Fox; Christopher J. Schmidt; Robert Williams; Douglas S. Chapin; Judith A. Siuciak; Lorraine A. Lebel; Frank S. Menniti; Julia Cianfrogna; Kari R. Fonseca; Frederick R. Nelson; Rebecca O'connor; Mary Macdougall; Laura McDowell; Spiros Liras

Utilizing structure-based virtual library design and scoring, a novel chimeric series of phosphodiesterase 10A (PDE10A) inhibitors was discovered by synergizing binding site interactions and ADME properties of two chemotypes. Virtual libraries were docked and scored for potential binding ability, followed by visual inspection to prioritize analogs for parallel and directed synthesis. The process yielded highly potent and selective compounds such as 16. New X-ray cocrystal structures enabled rational design of substituents that resulted in the successful optimization of physical properties to produce in vivo activity and to modulate microsomal clearance and permeability.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of small molecule isozyme non-specific inhibitors of mammalian acetyl-CoA carboxylase 1 and 2.

Jeffrey W. Corbett; Kevin Daniel Freeman-Cook; Richard L. Elliott; Felix Vajdos; Francis Rajamohan; D Kohls; Eric S. Marr; Hailong Zhang; Liang Tong; Meihua Tu; S Murdande; Shawn D. Doran; Janet A. Houser; Wei Song; C.J Jones; Steven B. Coffey; Leanne M. Buzon; Martha L. Minich; Kenneth J. DiRico; Susan Tapley; R.K. McPherson; E Sugarman; H.J Harwood; William Paul Esler

Screening Pfizers compound library resulted in the identification of weak acetyl-CoA carboxylase inhibitors, from which were obtained rACC1 CT-domain co-crystal structures. Utilizing HTS hits and structure-based drug discovery, a more rigid inhibitor was designed and led to the discovery of sub-micromolar, spirochromanone non-specific ACC inhibitors. Low nanomolar, non-specific ACC-isozyme inhibitors that exhibited good rat pharmacokinetics were obtained from this chemotype.


Journal of Medicinal Chemistry | 2013

Pyridone-Conjugated Monobactam Antibiotics with Gram-Negative Activity

Matthew Frank Brown; Mark J. Mitton-Fry; Rose Barham; Jeffrey M. Casavant; Brian S. Gerstenberger; Seungil Han; Joel R. Hardink; Thomas M. Harris; Thuy Hoang; Michael D. Huband; Manjinder S. Lall; M. Megan Lemmon; Chao Li; Jian Lin; Sandra P. McCurdy; Eric McElroy; Craig J. McPherson; Eric S. Marr; John P. Mueller; Lisa Mullins; Antonia A. Nikitenko; Mark C. Noe; Joseph Penzien; Mark Stephen Plummer; Brandon P. Schuff; Veerabahu Shanmugasundaram; Jeremy T. Starr; Jianmin Sun; Andrew P. Tomaras; Jennifer A. Young

Herein we describe the structure-aided design and synthesis of a series of pyridone-conjugated monobactam analogues with in vitro antibacterial activity against clinically relevant Gram-negative species including Pseudomonas aeruginosa , Klebsiella pneumoniae , and Escherichia coli . Rat pharmacokinetic studies with compound 17 demonstrate low clearance and low plasma protein binding. In addition, evidence is provided for a number of analogues suggesting that the siderophore receptors PiuA and PirA play a role in drug uptake in P. aeruginosa strain PAO1.


Acta Crystallographica Section D-biological Crystallography | 2009

A systematic study of 50S ribosomal subunit purification enabling robust crystallization.

Thomas J. McLellan; Eric S. Marr; Lillian M. Wondrack; Timothy A. Subashi; Paul A. Aeed; Seungil Han; Zuoyu Xu; Ing-Kae Wang; Bruce Maguire

A systematic analysis was undertaken to seek correlations between the integrity, purity and activity of 50S ribosomal subunit preparations from Deinococcus radiodurans and their ability to crystallize. Conditions of fermentation, purification and crystallization were varied in a search for crystals that could reliably supply an industrial X-ray crystallography program for the structure-based design of ribosomal antibiotics. A robust protocol was obtained to routinely obtain crystals that gave diffraction patterns extending to 2.9 A resolution and that were large enough to yield a complete data set from a single crystal. To our knowledge, this is the most systematic study of this challenging area so far undertaken. Ribosome crystallization is a complex multi-factorial problem and although a clear correlation of crystallization with subunit properties was not obtained, the search for key factors that potentiate crystallization has been greatly narrowed and promising areas for further inquiry are suggested.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel 3-O-carbamoyl erythromycin A derivatives (carbamolides) with activity against resistant staphylococcal and streptococcal isolates.

Thomas V. Magee; Seungil Han; Sandra P. McCurdy; Thuy-Trinh Nguyen; Karl Granskog; Eric S. Marr; Bruce Maguire; Michael D. Huband; Jinshan Michael Chen; Timothy A. Subashi; Veerabahu Shanmugasundaram

A novel series of 3-O-carbamoyl erythromycin A derived analogs, labeled carbamolides, with activity versus resistant bacterial isolates of staphylococci (including macrolide and oxazolidinone resistant strains) and streptococci are reported. An (R)-2-aryl substituent on a pyrrolidine carbamate appeared to be critical for achieving potency against resistant strains. Crystal structures showed a distinct aromatic interaction between the (R)-2-aryl (3-pyridyl for 4d) substituent on the pyrrolidine and G2484 (G2505, Escherichia coli) of the Deinococcus radiodurans 50S ribosome (3.2Å resolution).

Collaboration


Dive into the Eric S. Marr's collaboration.

Researchain Logo
Decentralizing Knowledge