Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric T. Harvill is active.

Publication


Featured researches published by Eric T. Harvill.


Immunity | 2001

Mice lacking the orphan G protein-coupled receptor G2A develop a late-onset autoimmune syndrome

Lu Q. Le; Janusz H. S. Kabarowski; Zhigang Weng; Anne B. Satterthwaite; Eric T. Harvill; Eric R. Jensen; Jeff F. Miller; Owen N. Witte

Mice with a targeted disruption of the gene encoding a lymphoid-expressed orphan G protein-coupled receptor, G2A, demonstrate a normal pattern of T and B lineage differentiation through young adulthood. As G2A-deficient animals age, they develop secondary lymphoid organ enlargement associated with abnormal expansion of both T and B lymphocytes. Older G2A-deficient mice (>1 year) develop a slowly progressive wasting syndrome, characterized by lymphocytic infiltration into various tissues, glomerular immune complex deposition, and anti-nuclear autoantibodies. G2A-deficient T cells are hyperresponsive to TCR stimulation, exhibiting enhanced proliferation and a lower threshold for activation. Our findings demonstrate that G2A plays a critical role in controlling peripheral lymphocyte homeostasis and that its ablation results in the development of a novel, late-onset autoimmune syndrome.


Genome Biology | 2008

Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes

Sandip Paul; Sumit K. Bag; Sabyasachi Das; Eric T. Harvill; Chitra Dutta

BackgroundHalophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation.ResultsComparative analysis of the genomes and proteomes of halophiles and non-halophiles reveals some common trends in halophiles that transcend the boundary of phylogenetic relationship and the genomic GC-content of the species. At the protein level, halophilic species are characterized by low hydrophobicity, over-representation of acidic residues, especially Asp, under-representation of Cys, lower propensities for helix formation and higher propensities for coil structure. At the DNA level, the dinucleotide abundance profiles of halophilic genomes bear some common characteristics, which are quite distinct from those of non-halophiles, and hence may be regarded as specific genomic signatures for salt-adaptation. The synonymous codon usage in halophiles also exhibits similar patterns regardless of their long-term evolutionary history.ConclusionThe generality of molecular signatures for environmental adaptation of extreme salt-loving organisms, demonstrated in the present study, advocates the convergent evolution of halophilic species towards specific genome and amino acid composition, irrespective of their varying GC-bias and widely disparate taxonomic positions. The adapted features of halophiles seem to be related to physical principles governing DNA and protein stability, in response to the extreme environmental conditions under which they thrive.


Molecular Microbiology | 1998

The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica

Ming Huam Yuk; Eric T. Harvill; Jeff F. Miller

The BvgAS signal transduction system in Bordetella spp. mediates a transition between infectious (Bvg+) and non‐infectious (Bvg−) phases by sensing environmental conditions and regulating gene expression. Using differential display, arbitrary‐primed polymerase chain reaction (PCR), we identified a gene expressed in the Bvg+ phase of Bordetella bronchiseptica that shows a high degree of sequence similarity to a locus involved in providing energy for type III secretion in pathogenic Gram‐negative bacteria (yscN in Yersinia spp.). We determined that the expression of this homologue in B. bronchiseptica (designated bscN ) is regulated by bvg. Several open reading frames surrounding the bscN locus also show sequence similarity to loci encoding type III secretion apparatus components in other bacteria. An in‐frame deletion of bscN in B. bronchiseptica leads to decreased secretion of several proteins, decreased cytotoxicity towards cultured cell lines and a defect in causing tyrosine dephosphorylation of specific proteins in infected cells in vitro. The deletion strain also revealed that bscN‐mediated secretion is required for persistent colonization of the trachea in a rat infection model. Loci encoding type III secretion homologues were identified in four strains of B. pertussis and two strains of B. parapertussis. B. pertussis strain 18323 and an ovine isolate of B. parapertussis show significant transcription of the genes in vitro.


Molecular Microbiology | 2000

Modulation of host immune responses, induction of apoptosis and inhibition of NF‐κB activation by the Bordetella type III secretion system

Ming Huam Yuk; Eric T. Harvill; Peggy A. Cotter; Jeff F. Miller

Bordetella bronchiseptica establishes respiratory tract infections in laboratory animals with high efficiency. Colonization persists for the life of the animal and infection is usually asymptomatic in immunocompetent hosts. We hypothesize that this reflects a balance between immunostimulatory events associated with infection and immunomodulatory events mediated by the bacteria. We have identified 15 loci that are part of a type III secretion apparatus in B. bronchiseptica and three secreted proteins. The functions of the type III secretion system were investigated by comparing the phenotypes of wild‐type bacteria with two strains that are defective in type III secretion using in vivo and in vitro infection models. Type III secretion mutants were defective in long‐term colonization of the trachea in immunocompetent mice. The mutants also elicited higher titres of anti‐Bordetella antibodies upon infection compared with wild‐type bacteria. Type III secretion mutants also showed increased lethal virulence in immunodeficient SCID‐beige mice. These observations suggest that type III‐secreted products of B. bronchiseptica interact with components of both innate and adaptive immune systems of the host. B. bronchiseptica induced apoptosis in macrophages in vitro and inflammatory cells in vivo and type III secretion was required for this process. Infection of an epithelial cell line with high numbers of wild type, but not type III deficient B. bronchiseptica resulted in rapid aggregation of NF‐κB into large complexes in the cytoplasm. NF‐κB aggregation was dependent on type III secretion and aggregated NF‐κB did not respond to TNFα activation, suggesting B. bronchiseptica may modulate host immunity by inactivating NF‐κB. Based on these in vivo and in vitro results, we hypothesize that the Bordetella type III secretion system functions to modulate host immune responses during infection.


Mbio | 2014

Global Population Structure and Evolution of Bordetella pertussis and Their Relationship with Vaccination

Marieke J. Bart; Simon R. Harris; Abdolreza Advani; Yoshichika Arakawa; Daniela Bottero; Valérie Bouchez; Pamela K. Cassiday; Chuen-Sheue Chiang; Tine Dalby; Norman K. Fry; María Emilia Gaillard; Marjolein van Gent; Nicole Guiso; Hans O. Hallander; Eric T. Harvill; Qiushui He; Han G. J. van der Heide; Kees Heuvelman; Daniela Hozbor; Kazunari Kamachi; Gennady I. Karataev; Ruiting Lan; Anna Lutyńska; Ram P. Maharjan; Jussi Mertsola; Tatsuo Miyamura; Sophie Octavia; Andrew Preston; Michael A. Quail; Vitali Sintchenko

ABSTRACT Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape. Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape.


PLOS Computational Biology | 2005

Modeling Systems-Level Regulation of Host Immune Responses

Juilee Thakar; Mylisa R. Pilione; Girish S. Kirimanjeswara; Eric T. Harvill; Réka Albert

Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods.


Infection and Immunity | 2000

Multiple roles for Bordetella lipopolysaccharide molecules during respiratory tract infection.

Eric T. Harvill; Andrew Preston; Peggy A. Cotter; Andrew G. Allen; Duncan J. Maskell; Jeff F. Miller

ABSTRACT Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are closely related subspecies that cause respiratory tract infections in humans and other mammals and express many similar virulence factors. Their lipopolysaccharide (LPS) molecules differ, containing either a complex trisaccharide (B. pertussis), a trisaccharide plus an O-antigen-like repeat (B. bronchiseptica), or an altered trisaccharide plus an O-antigen-like repeat (B. parapertussis). Deletion of the wlb locus results in the loss of membrane-distal polysaccharide domains in the three subspecies of bordetellae, leaving LPS molecules consisting of lipid A and core oligosaccharide. We have used wlb deletion (Δwlb) mutants to investigate the roles of distal LPS structures in respiratory tract infection by bordetellae. Each mutant was defective compared to its parent strain in colonization of the respiratory tracts of BALB/c mice, but the location in the respiratory tract and the time point at which defects were observed differed significantly. Although the Δwlb mutants were much more sensitive to complement-mediated killing in vitro, they displayed similar defects in respiratory tract colonization in C5−/− mice compared with wild-type (wt) mice, indicating that increased sensitivity to complement-mediated lysis is not sufficient to explain the in vivo defects. B. pertussis andB. parapertussis Δwlb mutants were also defective compared to wt strains in colonization of SCID-beige mice, indicating that the defects were not limited to interactions with adaptive immunity. Interestingly, the B. bronchiseptica Δwlbstrain was defective, compared to the wt strain, in colonization of the respiratory tracts of BALB/c mice beginning 1 week postinoculation but did not differ from the wt strain in its ability to colonize the respiratory tracts of B-cell- and T-cell-deficient mice, suggesting that wlb-dependent LPS modifications in B. bronchiseptica modulate interactions with adaptive immunity. These data show that biosynthesis of a full-length LPS molecule by these three bordetellae is essential for the expression of full virulence for mice. In addition, the data indicate that the different distal structures modifying the LPS molecules on these three closely related subspecies serve different purposes in respiratory tract infection, highlighting the diversity of functions attributable to LPS of gram-negative bacteria.


Journal of Clinical Investigation | 2005

Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis

Girish S. Kirimanjeswara; Luis M. Agosto; Mary J. Kennett; Ottar N. Bjørnstad; Eric T. Harvill

Whooping cough is considered a childhood disease, although there is growing evidence that children are infected by adult carriers. Additionally, increasing numbers of vaccinated adults are being diagnosed with Bordetella pertussis disease. Thus it is critical to understand how B. pertussis remains endemic even in highly vaccinated or immune populations. Here we used the mouse model to examine the nature of sterilizing immunity to B. pertussis. Antibodies were necessary to control infection but did not rapidly clear B. pertussis from the lungs. However, antibodies affected B. pertussis after a delay of at least a week by a mechanism that involved neutrophils and Fc receptors, suggesting that neutrophils phagocytose and clear antibody-opsonized bacteria via Fc receptors. B. pertussis blocked migration of neutrophils and inhibited their recruitment to the lungs during the first week of infection by a pertussis toxin-dependent (PTx-dependent) mechanism; a PTx mutant of B. pertussis induced rapid neutrophil recruitment and was rapidly cleared from the lungs by adoptively transferred antibodies. Depletion of neutrophils abrogated the defects of the PTx mutant. Together these results indicate that PTx inhibits neutrophil recruitment, which consequently allows B. pertussis to avoid rapid antibody-mediated clearance and therefore successfully infect immune hosts.


Molecular Microbiology | 2003

Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract

Andrew Preston; Elizabeth Maxim; Elinor Toland; E. Jane Pishko; Eric T. Harvill; Martine Caroff; Duncan J. Maskell

Bordetella bronchiseptica lipopolysaccharide (LPS) expression varies depending on growth conditions, regulated by the Bvg system. A B. bronchiseptica pagP homologue was identified that is required for Bvg‐mediated modification of the lipid A core region of LPS that occurs on switching from the Bvg– to the Bvg+ phase. Structural analysis demonstrated that the lipid A of a B. bronchiseptica pagP mutant differed from wild‐type lipid A by the absence of a palmitate group in secondary acylation at the C3′ position. The putative pagP promoter drove the expression of a green fluorescent protein (GFP) reporter gene in a Bvg‐regulated fashion. These data suggest that B. bronchiseptica pagP encodes a Bvg‐regulated lipid A palmitoyl transferase that mediates modification of the lipid A as part of the overall Bvg‐mediated adaptation of this organism to changing environmental conditions. We also show that pagP is not required for the initial colonization of the mouse respiratory tract by B. bronchiseptica, but is required for persistence of the organism within this organ.


Infection and Immunity | 2003

Role of Antibodies in Immunity to Bordetella Infections

Girish S. Kirimanjeswara; Paul B. Mann; Eric T. Harvill

ABSTRACT The persistence of Bordetellapertussis and B. parapertussis within vaccinated populations and the reemergence of associated disease highlight the need to better understand protective immunity. The present study examined host immunity to bordetellae and addressed potential concerns about the mouse model by using a comparative approach including the closely related mouse pathogen B. bronchiseptica. As previously observed with B. pertussis, all three organisms persisted throughout the respiratory tracts of B-cell-deficient mice, indicating that B cells are required for bacterial clearance. However, adoptively transferred antibodies rapidly cleared B. bronchiseptica but not human pathogens. These results obtained with the mouse model are consistent with human clinical observations, including the lack of correlation between antibody titers and protection, as well as the limited efficacy of intravenous immunoglobulin treatments against human disease. Together, this evidence suggests that the mouse model accurately reflects substantial differences between immunities to these organisms. Although both B. pertussis and B. parapertussis are more closely related to B. bronchiseptica than they are to each other, they share the ability to resist rapid clearance from the lower respiratory tract by adoptively transferred antibodies, an adaptation that correlates with their emergence as human pathogens that circulate within vaccinated populations.

Collaboration


Dive into the Eric T. Harvill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary J. Kennett

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Daniel N. Wolfe

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jeff F. Miller

University of California

View shared research outputs
Top Co-Authors

Avatar

Laura L. Goodfield

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul B. Mann

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sara E. Hester

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Yury V. Ivanov

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge