Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Vauthey is active.

Publication


Featured researches published by Eric Vauthey.


Science | 2006

Photoproduction of Proton Gradients with π-Stacked Fluorophore Scaffolds in Lipid Bilayers

Sheshanath V. Bhosale; Adam L. Sisson; Pinaki Talukdar; Alexandre Fürstenberg; Natalie Banerji; Eric Vauthey; Guillaume Bollot; Jiri Mareda; Cornelia Röger; Frank Würthner; Naomi Sakai; Stefan Matile

Rigid p-octiphenyl rods were used to create helical tetrameric π-stacks of blue, red-fluorescent naphthalene diimides that can span lipid bilayer membranes. In lipid vesicles containing quinone as electron acceptors and surrounded by ethylenediaminetetraacetic acid as hole acceptors, transmembrane proton gradients arose through quinone reduction upon excitation with visible light. Quantitative ultrafast and relatively long-lived charge separation was confirmed as the origin of photosynthetic activity by femtosecond fluorescence and transient absorption spectroscopy. Supramolecular self-organization was essential in that photoactivity was lost upon rod shortening (from p-octiphenyl to biphenyl) and chromophore expansion (from naphthalene diimide to perylene diimide). Ligand intercalation transformed the photoactive scaffolds into ion channels.


Journal of the American Chemical Society | 2010

Exciton formation, relaxation, and decay in PCDTBT.

Natalie Banerji; Sarah Cowan; Mario Leclerc; Eric Vauthey; Alan J. Heeger

The nature and time evolution of the primary excitations in the pristine conjugated polymer, PCDTBT, are investigated by femtosecond-resolved fluorescence up-conversion spectroscopy. The extensive study includes data from PCDTBT thin film and from PCDTBT in chlorobenzene solution, compares the fluorescence dynamics for several excitation and emission wavelengths, and is complemented by polarization-sensitive measurements. The results are consistent with the photogeneration of mobile electrons and holes by interband π-π* transitions, which then self-localize within about 100 fs and evolve to a bound singlet exciton state in less than 1 ps. The excitons subsequently undergo successive migrations to lower energy localized states, which exist as a result of disorder. In parallel, there is also slow conformational relaxation of the polymer backbone. While the initial self-localization occurs faster than the time resolution of our experiment, the exciton formation, exciton migration, and conformational changes lead to a progressive relaxation of the inhomogeneously broadened emission spectrum with time constants ranging from about 500 fs to tens of picoseconds. The time scales found here for the relaxation processes in pristine PCDTBT are compared to the time scale (<0.2 ps) previously reported for photoinduced charge transfer in phase-separated PCDTBT:fullerene blends (Phys. Rev. B 2010, 81, 125210). We point out that exciton formation and migration in PCDTBT occur at times much longer than the ultrafast photoinduced electron transfer time in PCDTBT:fullerene blends. This disparity in time scales is not consistent with the commonly proposed idea that photoinduced charge separation occurs after diffusion of the polymer exciton to a fullerene interface. We therefore discuss alternative mechanisms that are consistent with ultrafast charge separation before localization of the primary excitation to form a bound exciton.


Annual Review of Physical Chemistry | 2013

Ultrafast Photochemistry in Liquids

Arnulf Rosspeintner; Bernhard Felix Lang; Eric Vauthey

Ultrafast photochemical processes can occur in parallel with the relaxation of the optically populated excited state toward equilibrium. The latter involves both intra- and intermolecular modes, namely vibrational and solvent coordinates, and takes place on timescales ranging from a few tens of femtoseconds to up to hundreds of picoseconds, depending on the system. As a consequence, the reaction dynamics can substantially differ from those usually measured with slower photoinduced processes occurring from equilibrated excited states. For example, the decay of the excited-state population may become strongly nonexponential and depend on the excitation wavelength, contrary to the Kasha and Vavilov rules. In this article, we first give a brief account of our current understanding of vibrational and solvent relaxation processes. We then present an overview of important classes of ultrafast photochemical reactions, namely electron and proton transfer as well as isomerization, and illustrate with several examples how nonequilibrium effects can affect their dynamics.


Angewandte Chemie | 2008

Zipper Assembly of Vectorial Rigid-Rod π-Stack Architectures with Red and Blue Naphthalenediimides: Toward Supramolecular Cascade n/p-Heterojunctions†

Adam L. Sisson; Naomi Sakai; Natalie Banerji; Alexandre Fürstenberg; Eric Vauthey; Stefan Matile

Zipped up: Supramolecular 3D organization on gold with interdigitating intra- and interlayer recognition motifs (see picure, black p-oligophenyl rods; red, blue naphthalenediimide (NDI) stacks) is designed to access supramolecular cascade n/p-heterojunctions or the adaptable directionality needed to control fill factors in current–voltage curves.


Journal of the American Chemical Society | 2009

Ordered and oriented supramolecular n/p-heterojunction surface architectures: completion of the primary color collection

Ravuri S. K. Kishore; Oksana Kel; Natalie Banerji; Daniel Emery; Guillaume Bollot; Jiri Mareda; Alberto Gomez-Casado; Pascal Jonkheijm; Jurriaan Huskens; Plinio Maroni; Michal Borkovec; Eric Vauthey; Naomi Sakai; Stefan Matile

In this study, we describe synthesis, characterization, and zipper assembly of yellow p-oligophenyl naphthalenediimide (POP-NDI) donor-acceptor hybrids. Moreover, we disclose, for the first time, results from the functional comparison of zipper and layer-by-layer (LBL) assembly as well as quartz crystal microbalance (QCM), atomic force microscopy (AFM), and molecular modeling data on zipper assembly. Compared to the previously reported blue and red NDIs, yellow NDIs are more pi-acidic, easier to reduce, and harder to oxidize. The optoelectronic matching achieved in yellow POP-NDIs is reflected in quantitative and long-lived photoinduced charge separation, comparable to their red and much better than their blue counterparts. The direct comparison of zipper and LBL assemblies reveals that yellow zippers generate more photocurrent than blue zippers as well as LBL photosystems. Continuing linear growth found in QCM measurements demonstrates that photocurrent saturation at the critical assembly thickness occurs because more charges start to recombine before reaching the electrodes and not because of discontinued assembly. The found characteristics, such as significant critical thickness, strong photocurrents, large fill factors, and, according to AFM images, smooth surfaces, are important for optoelectronic performance and support the existence of highly ordered architectures.


Journal of the American Chemical Society | 2011

Self-Organizing Surface-Initiated Polymerization: Facile Access to Complex Functional Systems

Naomi Sakai; Marco Lista; Oksana Kel; Shin-ichiro Sakurai; Daniel Emery; Jiri Mareda; Eric Vauthey; Stefan Matile

Facile access to complex systems is crucial to generate the functional materials of the future. Herein, we report self-organizing surface-initiated polymerization (SOSIP) as a user-friendly method to create ordered as well as oriented functional systems on transparent oxide surfaces. In SOSIP, self-organization of monomers and ring-opening disulfide exchange polymerization are combined to ensure the controlled growth of the polymer from the surface. This approach provides rapid access to thick films with smooth, reactivatable surfaces and long-range order with few defects and high precision, including panchromatic photosystems with oriented four-component redox gradients. The activity of SOSIP architectures is clearly better than that of disordered controls.


The EMBO Journal | 2011

An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity.

Tom J. Petty; Soheila Emamzadah; Lorenzo Costantino; Irina Petkova; Jeffery G. Saven; Eric Vauthey; Thanos D. Halazonetis

The p53 tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence‐specific DNA binding and homo‐tetramerization domains. Interestingly, the affinities of p53 for specific and non‐specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets in vivo. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA. The structure reveals that sequence‐specific DNA binding proceeds via an induced fit mechanism that involves a conformational switch in loop L1 of the p53 DNA binding domain. Analysis of loop L1 mutants demonstrated that the conformational switch allows DNA binding off‐rates to be regulated independently of affinities. These results may explain the universal prevalence of conformational switching in sequence‐specific DNA binding proteins and suggest that proteins like p53 rely more on differences in binding off‐rates, than on differences in affinities, to recognize their specific DNA sites.


Journal of Chemical Physics | 2004

Effect of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of donor-acceptor complexes: Stochastic simulations and experiments

Roman G. Fedunov; Serguei V. Feskov; Anatoly I. Ivanov; Olivier Nicolet; Stéphane Pages; Eric Vauthey

The influence of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of excited donor-acceptor complexes has been explored both theoretically and experimentally. The theoretical description involves the explicit treatment of both the optical formation of the nuclear wave packet on the excited free energy surface and its ensuing dynamics. The wave packet motion and the electronic transition are described within the framework of the stochastic point-transition approach. It is shown that the variation of the pulse carrier frequency within the absorption band can significantly change the effective charge recombination dynamics. The mechanism of this phenomenon is analyzed and a semiquantitative interpretation is suggested. The role of the vibrational coherence in the recombination dynamics is discussed. An experimental investigation of the ultrafast charge recombination dynamics of two donor-acceptor complexes in valeronitrile also is presented. The decays of the excited state population were found to be highly nonexponential, the degree of non-exponentiality depending on the excitation frequency. For one complex, the charge recombination dynamics was found to slow down upon increasing the excitation frequency, while the opposite behavior was observed with the other complex. These experimental observations follow qualitatively the predictions of the simulations.


Journal of Physical Chemistry A | 2009

Excited-State Dynamics of Hybrid Multichromophoric Systems: Toward an Excitation Wavelength Control of the Charge Separation Pathways

Natalie Banerji; Guillaume Duvanel; Alejandro Perez-Velasco; Santanu Maity; Naomi Sakai; Stefan Matile; Eric Vauthey

The photophysical properties of two hybrid multichromophoric systems consisting of an oligophenylethynyl (OPE) scaffold decorated by 10 red or blue naphthalene diimides (NDIs) have been investigated using femtosecond spectroscopy. Ultrafast charge separation was observed with both red and blue systems. However, the nature of the charge-separated state and its lifetime were found to differ substantially. For the red system, electron transfer occurs from the OPE scaffold to an NDI unit, independently of whether the OPE or an NDI is initially excited. However, charge separation upon OPE excitation is about 10 times faster, and takes place with a 100 fs time constant. The average lifetime of the ensuing charge-separated state amounts to about 650 ps. Charge separation in the blue system depends on which of the OPE scaffold or an NDI is excited. In the first case, an electron is transferred from the OPE to an NDI and the hole subsequently shifts to another NDI unit, whereas in the second case symmetry-breaking charge separation between two NDI units occurs. Although the charges are located on two NDIs in both cases, different recombination dynamics are observed. This is explained by the location of the ionic NDI moieties that depends on the charge separation pathway, hence on the excitation wavelength. The very different dynamics observed with red and blue systems can be accounted for by the oxidation potentials of the respective NDIs that are higher and lower than that of the OPE scaffold. Because of this, the relative energies of the two charge-separated states (hole on the OPE or an NDI) are inverted.


Chemical Communications | 2011

Supramolecular construction of vesicles based on core-substituted naphthalene diimide appended with triethyleneglycol motifs

Sheshanath V. Bhosale; Chintan H. Jani; Cecilia H. Lalander; Steven J. Langford; Igor Nerush; Joseph G. Shapter; Diego Villamaina; Eric Vauthey

The self-assembly of core-substituted naphthalene diimides bearing triethylene glycol motifs leads to the formation of stable vesicles in DMSO and CHCl(3)/MeOH (6 : 4, v/v) solvents. The vesicles were evaluated by means of UV/vis and fluorescence spectroscopy, transmission electron microscopy, atomic force microscopy and dynamic light scattering.

Collaboration


Dive into the Eric Vauthey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gonzalo Angulo

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Suppan

University of Fribourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge