Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric W. Brunskill is active.

Publication


Featured researches published by Eric W. Brunskill.


Nature | 2005

Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death

Christopher P. Baines; Robert A. Kaiser; Nicole H. Purcell; N. Scott Blair; Hanna Osinska; Michael Hambleton; Eric W. Brunskill; M. Richard Sayen; Roberta A. Gottlieb; Gerald W. Dorn; Jeffrey Robbins; Jeffery D. Molkentin

Mitochondria play a critical role in mediating both apoptotic and necrotic cell death. The mitochondrial permeability transition (mPT) leads to mitochondrial swelling, outer membrane rupture and the release of apoptotic mediators. The mPT pore is thought to consist of the adenine nucleotide translocator, a voltage-dependent anion channel, and cyclophilin D (the Ppif gene product), a prolyl isomerase located within the mitochondrial matrix. Here we generated mice lacking Ppif and mice overexpressing cyclophilin D in the heart. Ppif null mice are protected from ischaemia/reperfusion-induced cell death in vivo, whereas cyclophilin D-overexpressing mice show mitochondrial swelling and spontaneous cell death. Mitochondria isolated from the livers, hearts and brains of Ppif null mice are resistant to mitochondrial swelling and permeability transition in vitro. Moreover, primary hepatocytes and fibroblasts isolated from Ppif null mice are largely protected from Ca2+-overload and oxidative stress-induced cell death. However, Bcl-2 family member-induced cell death does not depend on cyclophilin D, and Ppif null fibroblasts are not protected from staurosporine or tumour-necrosis factor-α-induced death. Thus, cyclophilin D and the mitochondrial permeability transition are required for mediating Ca2+- and oxidative damage-induced cell death, but not Bcl-2 family member-regulated death.


Circulation Research | 2007

Genetic Manipulation of Periostin Expression Reveals a Role in Cardiac Hypertrophy and Ventricular Remodeling

Toru Oka; Jian Xu; Robert A. Kaiser; Jaime Melendez; Michael Hambleton; Michelle A. Sargent; Angela Lorts; Eric W. Brunskill; Gerald W. Dorn; Simon J. Conway; Bruce J. Aronow; Jeffrey Robbins; Jeffery D. Molkentin

The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn−/− mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn−/− hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn−/− hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy.


Developmental Cell | 2008

Atlas of Gene Expression in the Developing Kidney at Microanatomic Resolution

Eric W. Brunskill; Bruce J. Aronow; Kylie Georgas; Bree Rumballe; M. Todd Valerius; Jeremy Aronow; Vivek Kaimal; Anil G. Jegga; Sean M. Grimmond; Andrew P. McMahon; Larry T. Patterson; Melissa H. Little; S. Steven Potter

Kidney development is based on differential cell-type-specific expression of a vast number of genes. While multiple critical genes and pathways have been elucidated, a genome-wide analysis of gene expression within individual cellular and anatomic structures is lacking. Accomplishing this could provide significant new insights into fundamental developmental mechanisms such as mesenchymal-epithelial transition, inductive signaling, branching morphogenesis, and segmentation. We describe here a comprehensive gene expression atlas of the developing mouse kidney based on the isolation of each major compartment by either laser capture microdissection or fluorescence-activated cell sorting, followed by microarray profiling. The resulting data agree with known expression patterns and additional in situ hybridizations. This kidney atlas allows a comprehensive analysis of the progression of gene expression states during nephrogenesis, as well as discovery of potential growth factor-receptor interactions. In addition, the results provide deeper insight into the genetic regulatory mechanisms of kidney development.


Developmental Biology | 2009

Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment.

Kylie Georgas; Bree Rumballe; M. Todd Valerius; Han Sheng Chiu; Rathi D. Thiagarajan; Emmanuelle Lesieur; Bruce J. Aronow; Eric W. Brunskill; Alexander N. Combes; Dave Tang; Darrin Taylor; Sean M. Grimmond; S. Steven Potter; Andrew P. McMahon; Melissa H. Little

While nephron formation is known to be initiated by a mesenchyme-to-epithelial transition of the cap mesenchyme to form a renal vesicle (RV), the subsequent patterning of the nephron and fusion with the ureteric component of the kidney to form a patent contiguous uriniferous tubule has not been fully characterized. Using dual section in situ hybridization (SISH)/immunohistochemistry (IHC) we have revealed distinct distal/proximal patterning of Notch, BMP and Wnt pathway components within the RV stage nephron. Quantitation of mitoses and Cyclin D1 expression indicated that cell proliferation was higher in the distal RV, reflecting the differential developmental programs of the proximal and distal populations. A small number of RV genes were also expressed in the early connecting segment of the nephron. Dual ISH/IHC combined with serial section immunofluorescence and 3D reconstruction revealed that fusion occurs between the late RV and adjacent ureteric tip via a process that involves loss of the intervening ureteric epithelial basement membrane and insertion of cells expressing RV markers into the ureteric tip. Using Six2-eGFPCre x R26R-lacZ mice, we demonstrate that these cells are derived from the cap mesenchyme and not the ureteric epithelium. Hence, both nephron patterning and patency are evident at the late renal vesicle stage.


Circulation Research | 2006

Cardiac-Specific Ablation of G-Protein Receptor Kinase 2 Redefines Its Roles in Heart Development and β-Adrenergic Signaling

Scot J. Matkovich; Abhinav Diwan; Justin L. Klanke; Daniel J. Hammer; Yehia Marreez; Amy Odley; Eric W. Brunskill; Walter J. Koch; Robert J. Schwartz; Gerald W. Dorn

G-protein receptor kinase 2 (GRK2) is 1 of 7 mammalian GRKs that phosphorylate ligand-bound 7-transmembrane receptors, causing receptor uncoupling from G proteins and potentially activating non–G-protein signaling pathways. GRK2 is unique among members of the GRK family in that its genetic ablation causes embryonic lethality. Cardiac abnormalities in GRK2 null embryos implicated GRK2 in cardiac development but prevented studies of the knockout phenotype in adult hearts. Here, we created GRK2-loxP–targeted mice and used Cre recombination to generate germline and cardiac-specific GRK2 knockouts. GRK2 deletion in the preimplantation embryo with EIIa-Cre (germline null) resulted in developmental retardation and embryonic lethality between embryonic day 10.5 (E10.5) and E11.5. At E9.5, cardiac myocyte specification and cardiac looping were normal, but ventricular development was delayed. Cardiomyocyte-specific ablation of GRK2 in the embryo with Nkx2.5-driven Cre (cardiac-specific GRK2 knockout) produced viable mice with normal heart structure, function, and cardiac gene expression. Cardiac-specific GRK2 knockout mice exhibited enhanced inotropic sensitivity to the &bgr;-adrenergic receptor agonist isoproterenol, with impairment of normal inotropic and lusitropic tachyphylaxis, and exhibited accelerated development of catecholamine toxicity with chronic isoproterenol treatment. These findings show that cardiomyocyte autonomous GRK2 is not essential for myocardial development after cardiac specification, suggesting that embryonic developmental abnormalities may be attributable to extracardiac effects of GRK2 ablation. In the adult heart, cardiac GRK2 is a major factor regulating inotropic and lusitropic tachyphylaxis to &bgr;-adrenergic agonist, which likely contributes to its protective effects in catecholamine cardiomyopathy.


Development | 2011

The GUDMAP database – an online resource for genitourinary research

Simon Harding; Chris Armit; Jane Armstrong; Jane Brennan; Ying Cheng; Bernard Haggarty; Derek Houghton; Sue Lloyd-MacGilp; Xingjun Pi; Yogmatee Roochun; Mehran Sharghi; Christopher Tindal; Andrew P. McMahon; Brian Gottesman; Melissa H. Little; Kylie Georgas; Bruce J. Aronow; S. Steven Potter; Eric W. Brunskill; E. Michelle Southard-Smith; Cathy Mendelsohn; Richard Baldock; Jamie A. Davies; Duncan Davidson

The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the developing mouse genitourinary (GU) system. These expression data are annotated using a high-resolution anatomy ontology specific to the developing murine GU system. GUDMAP data are freely accessible at www.gudmap.org via easy-to-use interfaces. This curated, high-resolution dataset serves as a powerful resource for biologists, clinicians and bioinformaticians interested in the developing urogenital system. This paper gives examples of how the data have been used to address problems in developmental biology and provides a primer for those wishing to use the database in their own research.


PLOS ONE | 2011

Defining the Molecular Character of the Developing and Adult Kidney Podocyte

Eric W. Brunskill; Kylie Georgas; Bree Rumballe; Melissa H. Little; S. Steven Potter

Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells.


Journal of The American Society of Nephrology | 2011

Genes that Confer the Identity of the Renin Cell

Eric W. Brunskill; Maria Luisa S. Sequeira-Lopez; Ellen S. Pentz; Eugene Lin; Jing Yu; Bruce J. Aronow; S. Steven Potter; R. A. Gomez

Renin-expressing cells modulate BP, fluid-electrolyte homeostasis, and kidney development, but remarkably little is known regarding the genetic regulatory network that governs the identity of these cells. Here we compared the gene expression profiles of renin cells with most cells in the kidney at various stages of development as well as after a physiologic challenge known to induce the transformation of arteriolar smooth muscle cells into renin-expressing cells. At all stages, renin cells expressed a distinct set of genes characteristic of the renin phenotype, which was vastly different from other cell types in the kidney. For example, cells programmed to exhibit the renin phenotype expressed Akr1b7, and maturing cells expressed angiogenic factors necessary for the development of the kidney vasculature and RGS (regulator of G-protein signaling) genes, suggesting a potential relationship between renin cells and pericytes. Contrary to the plasticity of arteriolar smooth muscle cells upstream from the glomerulus, which can transiently acquire the embryonic phenotype in the adult under physiologic stress, the adult juxtaglomerular cell always possessed characteristics of both smooth muscle and renin cells. Taken together, these results identify the gene expression profile of renin-expressing cells at various stages of maturity, and suggest that juxtaglomerular cells maintain properties of both smooth muscle and renin-expressing cells, likely to allow the rapid control of body fluids and BP through both contractile and endocrine functions.


Circulation Research | 2004

Physiological Growth Synergizes With Pathological Genes in Experimental Cardiomyopathy

Faisal Syed; Amy Odley; Harvey S. Hahn; Eric W. Brunskill; Roy A. Lynch; Yehia Marreez; Atsushi Sanbe; Jeffrey Robbins; Gerald W. Dorn

Hundreds of signaling molecules have been assigned critical roles in the pathogenesis of myocardial hypertrophy and heart failure based on cardiac phenotypes from &agr;-myosin heavy chain–directed overexpression mice. Because permanent ventricular transgene expression in this system begins during a period of rapid physiological neonatal growth, resulting phenotypes are the combined consequences of transgene effects and normal trophic influences. We used temporally-defined forced gene expression to investigate synergy between postnatal physiological cardiac growth and two functionally divergent cardiomyopathic genes. Phenotype development was compared various times after neonatal (age 2 to 3 days) and adult (age 8 weeks) expression. Proapoptotic Nix caused ventricular dilation and severe contractile depression in neonates, but not adults. Myocardial apoptosis was minimal in adults, but was widespread in neonates, until it spontaneously resolved in adulthood. Unlike normal postnatal cardiac growth, concurrent left ventricular pressure overload hypertrophy did not synergize with Nix expression to cause cardiomyopathy or myocardial apoptosis. Prohypertrophic G&agr;q likewise caused eccentric hypertrophy, systolic dysfunction, and pathological gene expression in neonates, but not adults. Thus, normal postnatal cardiac growth can be an essential cofactor in development of genetic cardiomyopathies, and may confound the interpretation of conventional &agr;-MHC transgenic phenotypes.


Development | 2014

Single cell dissection of early kidney development: multilineage priming.

Eric W. Brunskill; Joo-Seop Park; Eunah Chung; Feng Chen; Bliss Magella; S. Steven Potter

We used a single cell RNA-seq strategy to create an atlas of gene expression patterns in the developing kidney. At several stages of kidney development, histologically uniform populations of cells give rise to multiple distinct lineages. We performed single cell RNA-seq analysis of total mouse kidneys at E11.5 and E12.5, as well as the renal vesicles at P4. We define an early stage of progenitor cell induction driven primarily by gene repression. Surprising stochastic expression of marker genes associated with differentiated cell types was observed in E11.5 progenitors. We provide a global view of the polarized gene expression already present in the renal vesicle, the first epithelial precursor of the nephron. We show that Hox gene read-through transcripts can be spliced to produce intergenic homeobox swaps. We also identify a surprising number of genes with partially degraded noncoding RNA. Perhaps most interesting, at early developmental times single cells often expressed genes related to several developmental pathways. This provides powerful evidence that initial organogenesis involves a process of multilineage priming. This is followed by a combination of gene repression, which turns off the genes associated with most possible lineages, and the activation of increasing numbers of genes driving the chosen developmental direction.

Collaboration


Dive into the Eric W. Brunskill's collaboration.

Top Co-Authors

Avatar

S. Steven Potter

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bruce J. Aronow

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerald W. Dorn

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry T. Patterson

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kylie Georgas

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Amy Odley

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Andrew P. McMahon

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphael Kopan

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge