Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Wille is active.

Publication


Featured researches published by Eric Wille.


New Journal of Physics | 2013

Quantum optics experiments using the International Space Station: a proposal

Thomas Scheidl; Eric Wille; Rupert Ursin

We propose performing quantum optics experiments in a ground-to-space scenario using the International Space Station, which is equipped with a glass viewing window and a photographers lens mounted on a motorized camera pod. A dedicated small add-on module with single-photon detection, time-tagging and classical communication capabilities would enable us to perform the first-ever quantum optics experiments in space. We present preliminary design concepts for the ground and flight segments and study the feasibility of the intended mission scenario.


X-ray Optics and Instrumentation | 2010

X-Ray Pore Optics Technologies and Their Application in Space Telescopes

Marcos Bavdaz; M. Collon; Marco W. Beijersbergen; Kotska Wallace; Eric Wille

Silicon Pore Optics (SPO) is a new X-ray optics technology under development in Europe, forming the ESA baseline technology for the International X-ray Observatory candidate mission studied jointly by ESA, NASA, and JAXA. With its matrix-like structure, made of monocrystalline-bonded Silicon mirrors, it can achieve the required angular resolution and low mass density required for future large X-ray observatories. Glass-based Micro Pore Optics (MPO) achieve modest angular resolution compared to SPO, but are even lighter and have achieved sufficient maturity level to be accepted as the X-ray optic technology for instruments on board the Bepi-Colombo mission, due to visit the planet Mercury. Opportunities for technology transfer to ground-based applications include material science, security and scanning equipment, and medical diagnostics. Pore X-ray optics combine high performance with modularity and economic industrial production processes, ensuring cost effective implementation.


Optical Engineering | 2013

Accurate integration of segmented x-ray optics using interfacing ribs

M. Civitani; S. Basso; Oberto Citterio; Paolo Conconi; Mauro Ghigo; Giovanni Pareschi; Laura Proserpio; B. Salmaso; Giorgia Sironi; D. Spiga; Gianpiero Tagliaferri; A. Zambra; Francesco Martelli; Giancarlo Parodi; Pierluigi Fumi; Daniele Gallieni; Matteo Tintori; Marcos Bavdaz; Eric Wille

Abstract. Future lightweight and long-focal-length x-ray telescopes must guarantee a good angular resolution (e.g., 5 arc sec HEW) and reach an unprecedented large effective area. This goal can be reached with the slumping of borosilicate glass sheets that allow the fabrication of lightweight and low-cost x-ray optical units (XOU). These XOUs, based on mirror segments, have to be assembled together to form complete multishell Wolter-I optics. The technology for the fabrication and the integration of these XOUs is under development in Europe, funded by European Space Agency, and led by the Brera Observatory (INAF-OAB). While the achievement of the required surface accuracy on the glass segments by means of a hot slumping technique is a challenging aspect, adequate attention must be given to the correct integration and coalignment of the mirror segments into the XOUs. To this aim, an innovative assembly concept has been investigated, based on glass reinforcing ribs. The ribs connect pairs of consecutive foils, stacked into a XOU, with both structural and functional roles, providing robust monolithic stacks of mirror plates. Moreover, this integration concept allows the correction of residual low-frequency errors still present on the mirror foil profile after slumping. We present the integration concept, the related error budget, and the results achieved so far with a semi-robotic integration machine especially designed and realized to assemble slumped glass foils into XOUs.


Proceedings of SPIE | 2014

Making the ATHENA optics using Silicon Pore Optics

Maximilien J. Collon; Marcelo Ackermann; Ramses Günther; Abdelhakim Chatbi; Giuseppe Vacanti; Mark Vervest; Alex Yanson; Marco W. Beijersbergen; Marcos Bavdaz; Eric Wille; Jeroen Haneveld; Mark Olde Riekerink; Arenda Koelewijn; Coen van Baren; Peter Müller; Michael Krumrey; Vadim Burwitz; Giorgia Sironi; Mauro Ghigo

Silicon Pore Optics, after 10 years of development, forms now the basis for future large (L) class astrophysics Xray observatories, such as the ATHENA mission to study the hot and energetic universe, matching the L2 science theme recently selected by ESA for launch in 2028. The scientific requirements result in an optical design that demands high angular resolution (5“) and large effective area (2 m2 at a few keV) of an X-ray lens with a focal length of 12 to14 m. Silicon Pore Optics was initially based on long (25 to 50 m) focal length telescope designs, which could achieve several arc second angular resolution by curving the silicon mirror in only one direction (conical approximation). With the advent of shorter focal length missions we started to develop mirrors having a secondary curvature, allowing the production of Wolter-I type optics, which are on axis aberration-free. In this paper we will present the new manufacturing process, discuss the impact of the ATHENA optics design on the technology development and present the results of the latest X-ray test campaigns.


Proceedings of SPIE | 2013

X-ray optics developments at ESA

Marcos Bavdaz; Eric Wille; Kotska Wallace; Brian Shortt; Sebastiaan Fransen; N. Rando; Maximilien J. Collon; Marcelo Ackermann; Giuseppe Vacanti; Ramses Günther; Jeroen Haneveld; Mark Olde Riekerink; Arenda Koelewijn; Coen van Baren; Dirk Kampf; Karl-Heintz Zuknik; Arnd Reutlinger; Finn Erland Christensen; Desiree Della Monica Ferreira; Anders Clemen Jakobsen; Michael Krumrey; Peter Müller; Vadim Burwitz; Giovanni Pareschi; Mauro Ghigo; M. Civitani; Laura Proserpio; D. Spiga; S. Basso; B. Salmaso

Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA) in collaboration with research institutions and industry, enabling leading-edge future science missions. Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class high energy astrophysics missions, aiming at angular resolutions of 5” and providing effective areas of one or more square meters at a few keV. This paper reports on the development activities led by ESA, and the status of the SPO and SGO technologies, including progress on high performance multilayer reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36].


Proceedings of SPIE | 2016

Silicon pore optics for the ATHENA telescope

Maximilien J. Collon; Giuseppe Vacanti; Ramses Günther; Alex Yanson; Boris Landgraf; Mark Vervest; Abdelhakim Chatbi; Roy van der Hoeven; Marco W. Beijersbergen; Marcos Bavdaz; Eric Wille; Brian Shortt; Jeroen Haneveld; Arenda Koelewijn; Coen van Baren; Alexander Eigenraam; Peter Müller; Michael Krumrey; Vadim Burwitz; Giovanni Pareschi; Paolo Conconi; Sonny Massahi; Finn Erland Christensen; Giuseppe Valsecchi

Silicon Pore Optics is a high-energy optics technology, invented to enable the next generation of high-resolution, large area X-ray telescopes such as the ATHENA observatory, a European large (L) class mission with a launch date of 2028. The technology development is carried out by a consortium of industrial and academic partners and focuses on building an optics with a focal length of 12 m that shall achieve an angular resolution better than 5”. So far we have built optics with a focal length of 50 m and 20 m. This paper presents details of the work carried out to build silicon stacks for a 12 m optics and to integrate them into mirror modules. It will also present results of x-ray tests taking place at PTB’s XPBF with synchrotron radiation and the PANTER test facility.


Proceedings of SPIE | 2013

Direct hot slumping and accurate integration process to manufacture prototypal X-ray optical units made of glass

M. Civitani; Mauro Ghigo; S. Basso; Laura Proserpio; D. Spiga; B. Salmaso; Giovanni Pareschi; G. Tagliaferri; Vadim Burwitz; Gisela D. Hartner; Benedikt Menz; Marcos Bavdaz; Eric Wille

X-ray telescopes with very large collecting area, like the proposed International X-ray Observatory (IXO, with around 3 m2 at 1 keV), need to be composed of a large number high quality mirror segments, aiming at achieving an angular resolution better than 5 arcsec HEW (Half-Energy-Width). A possible technology to manufacture the modular elements that will compose the entire optical module, named X-ray Optical Units (XOUs), consists of stacking in Wolter-I configuration several layers of thin foils of borosilicate glass, previously formed by hot slumping. The XOUs are subsequently assembled to form complete multi-shell optics with Wolter-I geometry. The achievable global angular resolution of the optic relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments. The Brera Astronomical Observatory (INAF-OAB) is leading a study, supported by ESA, concerning the implementation of the IXO telescopes based on thin slumped glass foils. In addition to the opto-mechanical design, the study foresees the development of a direct hot slumping thin glass foils production technology. Moreover, an innovative assembly concept making use of Wolter-I counter-form moulds and glass reinforcing ribs is under development. The ribs connect pairs of consecutive foils in an XOU stack, playing a structural and a functional role. In fact, as the ribs constrain the foil profile to the correct shape during the bonding, they damp the low-frequency profile errors still present on the foil after slumping. A dedicated semirobotic Integration MAchine (IMA) has been realized to this scope and used to build a few integrated prototypes made of several layers of slumped plates. In this paper we provide an overview of the project, we report the results achieved so far, including full illumination intra-focus X-ray tests of the last integrated prototype that are compliant with a HEW of around 17’’.


Proceedings of SPIE | 2012

Status of the ESA L1 mission candidate ATHENA

N. Rando; Didier Martin; David H. Lumb; P. Verhoeve; T. Oosterbroek; Marcos Bavdaz; Sebastiaan Fransen; M. Linder; R. Peyrou-Lauga; T. Voirin; M. Braghin; S. Mangunsong; M. van Pelt; Eric Wille

ATHENA (Advanced Telescope for High Energy Astrophysics) was an L class mission candidate within the science programme Cosmic Vision 2015-2025 of the European Space Agency, with a planned launch by 2022. ATHENA was conceived as an ESA-led project, open to the possibility of focused contributions from JAXA and NASA. By allowing astrophysical observations between 100 eV and 10 keV, it would represent the new generation X-ray observatory, following the XMM-Newton, Astro-H and Chandra heritage. The main scientific objectives of ATHENA include the study of large scale structures, the evolution of black holes, strong gravity effects, neutron star structure as well as investigations into dark matter. The ATHENA mission concept would be based on focal length of 12m achieved via a rigid metering tube and a twoaperture, x-ray telescope. Two identical x-ray mirrors would illuminate fixed focal plane instruments: a cryogenic imaging spectrometer (XMS) and a wide field imager (WFI). The S/C is designed to be fully compatible with Ariane 5 ECA. The observatory would operate at SE-L2, with a nominal lifetime of 5 yr. This paper provides a summary of the reformulation activities, completed in December 2011. An overview of the spacecraft design and of the payload is provided, including both telescope and instruments. Following the ESA Science Programme Committee decision on the L1 mission in May 2012, ATHENA was not selected to enter Definition Phase.


Proceedings of SPIE | 2011

ESA-led ATHENA/IXO optics development status

Marcos Bavdaz; N. Rando; Eric Wille; Kotska Wallace; Brian Shortt; Maximilien J. Collon; Coen van Baren; Giovanni Pareschi; Finn Erland Christensen; Michael Krumrey; Michael J. Freyberg

The International X-ray Observatory (IXO) is a candidate mission in the ESA Space Science Programme Cosmic Vision 1525, and was studied as a joint mission with NASA and JAXA. Considering the programmatic evolution of the international context, the mission is being reformulated as an ESA-led mission, under the name of ATHENA (Advanced Telescope for High Energy Astrophysics), with possible participation of NASA and JAXA. The mission is building on the novel Silicon Pore Optics (SPO) technology to achieve the required performance for this demanding astrophysics observatory. This technology is being developed by an industrial consortium, and involves also several research institutes [1-12]. A second optics technology, slumped glass optics (SGO), which is being developed in Europe and the USA, was the backup technology for IXO, and additionally work is progressing on improved reflective coatings and X-ray test facilities [13-17].


Proceedings of SPIE | 2013

Aberration-free silicon pore x-ray optics

Maximilien J. Collon; Marcelo Ackermann; Ramses Günther; Giuseppe Vacanti; Marco W. Beijersbergen; Marcos Bavdaz; Eric Wille; Kotska Wallace; Jeroen Haneveld; Mark Olde Riekerink; Arenda Koelewijn; Coen van Baren; Peter Müller; Michael Krumrey; Vadim Burwitz; Giorgia Sironi; Mauro Ghigo

Silicon Pore Optics is an enabling technology for future L- and M-class astrophysics X-ray missions, which require high angular resolution (~5 arc seconds) and large effective area (1 to 2 m2 at a few keV). The technology exploits the high-quality of super-polished 300 mm silicon wafers and the associated industrial mass production processes, which are readily available in the semiconductor industry. The plan-parallel wafers have a surface roughness better than 0.1 nm rms and are diced, structured, wedged, coated, bent and stacked to form modular Silicon Pore Optics, which can be grouped into a larger optic. The modules are assembled from silicon alone, with all the mechanical advantages, and form an intrinsically stiff pore structure. The optics design was initially based on long (25 to 50 m) focal length X-ray telescopes, which could achieve several arc second angular resolution by curving the silicon mirror in only one direction (conical approximation). Recently shorter focal length missions (10 to 20 m) have been discussed, for which we started to develop Silicon Pore Optics having a secondary curvature in the mirror, allowing the production of Wolter-I type optics, which are on axis aberration-free. In this paper we will present the new manufacturing process, the results achieved and the lessons learned.

Collaboration


Dive into the Eric Wille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge