Eric Yiou
University of Orléans
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric Yiou.
Gait & Posture | 2013
Teddy Caderby; Eric Yiou; Nicolas Peyrot; Bruno Bonazzi; Georges Dalleau
This study investigated the accuracy and reliability of four methods using force-plate data for detecting the swing heel-off (HO) time in gait initiation. Results of these methods were compared to those obtained by means of a reference method using a footswitch. Ten young healthy adults performed 18 forward gait initiation trials at self-selected speed and at maximal speed. Results showed that the method based on vertical impulse was the most accurate and reliable in determining HO in both speed conditions. The mean error obtained with this method was -8±10ms in the self-selected speed condition (-7±10ms in the maximal speed condition), with no significant effect of gait speed (P>0.05). These findings suggest that this method based on force-plate data is valid and reliable for detecting HO in forward gait initiation in the absence of additional hardware.
Experimental Brain Research | 2016
Eric Yiou; Paul Fourcade; Romain Artico; Teddy Caderby
AbstractMany daily motor tasks have to be performed under a temporal pressure constraint. This study aimed to explore the influence of such constraint on motor performance and postural stability during gait initiation. Young healthy participants initiated gait at maximal velocity under two conditions of temporal pressure: in the low-pressure condition, gait was self-initiated (self-initiated condition, SI); in the high-pressure condition, it was initiated as soon as possible after an acoustic signal (reaction-time condition, RT). Gait was initiated with and without an environmental constraint in the form of an obstacle to be cleared placed in front of participants. Results showed that the duration of postural adjustments preceding swing heel-off (“anticipatory postural adjustments”, APAs) was shorter, while their amplitude was larger in RT compared to SI. These larger APAs allowed the participants to reach equivalent postural stability and motor performance in both RT and SI. In addition, the duration of the execution phase of gait initiation increased greatly in the condition with an obstacle to be cleared (OBST) compared to the condition without an obstacle (NO OBST), thereby increasing lateral instability and thus involving larger mediolateral APA. Similar effects of temporal pressure were obtained in NO OBST and OBST. This study shows the adaptability of the postural system to temporal pressure in healthy young adults initiating gait. The outcome of this study may provide a basis for better understanding the aetiology of balance impairments with the risk of falling in frail populations while performing daily complex tasks involving a whole-body progression.
PLOS ONE | 2013
Tarek Hussein; Eric Yiou; Jacques Larue
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.
Journal of Electromyography and Kinesiology | 2011
Eric Yiou; S. Ditcharles; S. Le Bozec
During voluntary step initiation (SI), propulsive forces are generated during anticipatory postural adjustments (APA) which displace the centre-of-gravity (CoG) in the desired direction. These propulsive forces are implemented by ankle synergy, bilateral soleus inhibition followed by activation of tibialis anterior (TA). The aim of this study was to investigate the effect of fatigue applied to ankle dorsiflexors on APA associated with SI and on related motor performance. Eight young healthy participants initiated stepping before and after a protocol designed to generate fatigue in ankle dorsiflexors. Fatigue was induced by series of high-level isometric contractions performed until exhaustion. Results showed that, with fatigue, the level of TA activation during APA, anticipatory postural dynamics (backward centre-of-pressure displacement and forward CoG velocity) and related motor performance (peak of CoG velocity) were attenuated, while APA duration and total SI duration increased. These changes were interpreted as reflecting a protective strategy aiming to preserve the integrity of the fatigued muscles, rather than an impairment associated with muscle weakness.
Frontiers in Human Neuroscience | 2017
Teddy Caderby; Eric Yiou; Nicolas Peyrot; Xavier de Viviés; Bruno Bonazzi; Georges Dalleau
During gait initiation, anticipatory postural adjustments (APA) precede the execution of the first step. It is generally acknowledged that these APA contribute to forward progression but also serve to stabilize the whole body in the mediolateral direction during step execution. Although previous studies have shown that changes in the distribution of body weight between both legs influence motor performance during gait initiation, it is not known whether and how such changes affect a person’s postural stability during this task. The aim of this study was to investigate the effects of changing initial body weight distribution between legs on mediolateral postural stability during gait initiation. Changes in body weight distribution were induced under experimental conditions by modifying the frontal plane distribution of an external load located at the participants’ waists. Fifteen healthy adults performed a gait initiation series at a similar speed under three conditions: with the overload evenly distributed over both legs; with the overload strictly distributed over the swing-limb side; and with the overload strictly distributed over the stance-leg side. Our results showed that the mediolateral location of center-of-mass (CoM) during the initial upright posture differed between the experimental conditions, indicating modifications in the initial distribution of body weight between the legs according to the load distribution. While the parameters related to the forward progression remained unchanged, the alterations in body weight distribution elicited adaptive changes in the amplitude of APA in the mediolateral direction (i.e., maximal mediolateral shift of the center of pressure (CoP)), without variation in their duration. Specifically, it was observed that the amplitude of APA was modulated in such a way that mediolateral dynamic stability at swing foot-contact, quantified by the margin of stability (i.e., the distance between the base of support boundary and the extrapolated CoM position), did not vary between the conditions. These findings suggest that APA seem to be scaled as a function of the initial body weight distribution between both legs so as to maintain optimal conditions of stability during gait initiation.
Frontiers in Human Neuroscience | 2016
Eric Yiou; Romain Artico; Claudine A. Teyssedre; Ombeline Labaune; Paul Fourcade
Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS) controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs) and lateral swing foot placement. To answer the above question, 14 participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance and one obstacle-free (control) condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure) and self-initiated (low-pressure) movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off) center-of-mass position and velocity (or “initial center-of-mass set”) on the stability at foot-contact. Results showed that the anticipatory peak of mediolateral (ML) center-of-pressure shift, the initial ML center-of-mass velocity and the duration of the swing phase, of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that ML APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior (AP) component of APAs varied also according to obstacle height and distance, but in an opposite way to the ML component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward center-of-mass velocity at foot-off increased with obstacle distance, allowing a further step to be taken. These effects of obstacle height and distance were globally similar under low and high-temporal pressure. Collectively, these findings imply that the CNS is able to predict the potential instability elicited by the obstacle clearance and that it scales the spatiotemporal parameters of APAs accordingly.
Experimental Brain Research | 2014
Eric Yiou; Tarek Hussein; Jacques Larue
We investigated whether ankle loading modifies the relationship between temporal pressure and motor coordination during a whole-body paired task. Eight young healthy adults standing in an erect posture performed multiple series of simultaneous rapid leg flexions paired with ipsilateral index finger extensions. They repeated the task ten times in three load conditions: unloaded, loaded (where additional 5-kg inertia was attached to the ankles), and post-loaded (immediately following the loaded condition). These conditions were conducted in two blocks of temporal pressure: self-initiated (SI) versus reaction time (RT). When participants were unloaded, the results showed that index finger extension preceded swing heel-off in RT, and conversely in SI. By contrast, when the participants were loaded, swing heel-off preceded index finger extension in both SI and RT, showing that loading modified the relationship between temporal pressure and movement synchronization in RT only. However, loading did not induce any increase in the error of synchronization. Furthermore, in both the unloaded and loaded conditions, the duration of “anticipatory postural adjustments” (APA) was shorter when the temporal pressure was increased. Interestingly, the shorter APA duration was compensated by an increase in APA amplitude. Thus, loading did not modify the relationship between temporal pressure and anticipatory postural dynamics. Post-loaded and unloaded conditions produced the same results. These results show that the central nervous system optimally adapts the relationship between temporal pressure and motor coordination to transitory changes in the mechanical properties of the lower limbs, here due to ankle loading.
Computer Methods in Biomechanics and Biomedical Engineering | 2008
M. Mezaour; Eric Yiou; A.M. Heugas; S. Le Bozec
This study tested the effect of lower limb muscle fatigue induced by series of high-level isometric contractions (IC) on postural adjustments and maintenance of erect posture. Subjects (N = 7) displaced a bar (grasp-bar) forward with both hands at maximal velocity towards a target (‘‘bilateral forward-reach’’ task, BFR), before and after a procedure designed to induce fatigue in dorsal leg muscles. This procedure included IC at 60% of maximum. Postural joint and grasp-bar motion, along with electrical activity of postural and focal muscles were recorded. Integrated electromyographical (EMG) activity per 20 ms period ranging from 400 ms before BFR onset (t0) to 400 ms after t0 was compared before and after the fatiguing procedure. This time-window included ‘‘anticipatory’’, ‘‘on-line’’ and ‘‘corrective’’ postural adjustments, i.e. those postural adjustments occurring before (APAs), during (OPAs) and after (CPAs) BFR, respectively. In contrast to the literature, results showed that the fatiguing procedure had no effect on muscle excitation or timing in any of the recorded postural muscles, regardless of APA, OPA or CPArelated time-window. Therefore, the postural drive did not change with fatigue. Furthermore, the peakto-peak motion at postural joints did not change. Postural maintenance was therefore not additionally challenged. These results are in line with the hypothesis that the effect of fatigue on postural adjustments is dependent on the adequacy between fatigued motor units (MUs) and MUs recruited during the postural adjustments. Increasing IC intensity during the fatiguing procedure might therefore not necessarily exacerbate the effect of fatigue on postural control highlighted during lower level IC.
Computer Methods in Biomechanics and Biomedical Engineering | 2009
Eric Yiou; M. Mezaour; S. Le Bozec
Voluntary arm movements are preceded, accompanied and followed by a complex pattern of muscle activation/deactivation in lower limbs and trunk muscles called anticipatory (APA), on-line (OPA) and corrective (CPA) postural adjustments, respectively. It is generally admitted that their functional goal is to counter the perturbation to posture and equilibrium elicited by the focal movement (Bouisset and Zattara 1987). One way that is most often used in the literature to reduce the complexity in the analysis of these postural adjustments (PA) is to investigate the electrical activity of muscles in one single body side and to restrict the analysis to the sole APA time window. These ‘short-cuts’ have been typically used during bilateral arm movements performed symmetrically with respect to the sagittal plane, e.g. bilateral isometric ramp push (Le Bozec and Bouisset 2004), load releasing/catching from extended arms (Aruin et al. 1998), bilateral shoulder and elbow flexion/extension (Fujiwara et al. 2003), etc. If electromyographical (EMG) patterns are analysed unilaterally, then the assumption is implicitly made that changing the postural constraints will induce symmetrical EMG response in homologous muscles of dominant and nondominant leg. In the literature (Aruin et al. 1998; Fujiwara et al. 2003; Le Bozec and Bouisset 2004), this assumption is, however, exclusively based on visual inspections of EMG traces obtained in both sides and has never been subjected to experimental verification. This study tested the hypothesis that symmetrical upper limb task might involve asymmetrical PA with respect to lower limb dominance. Results of the present research might have consequences on studies reducing the postural response recordings to one leg and generalising the findings to the other one. Results may also have relevant implications in clinical investigations where postural asymmetry is generally considered as reflecting postural impairment.
World journal of orthopedics | 2017
Eric Yiou; Teddy Caderby; Arnaud Delafontaine; Paul Fourcade; Jean-Louis Honeine
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.