Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erica Borgogni is active.

Publication


Featured researches published by Erica Borgogni.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels

Grazia Galli; Duccio Medini; Erica Borgogni; Luisanna Zedda; Monia Bardelli; Carmine Malzone; Sandra Nuti; Simona Tavarini; Chiara Sammicheli; Anne Katrin Hilbert; Volker Brauer; Angelika Banzhoff; Rino Rappuoli; Giuseppe Del Giudice; Flora Castellino

Immune responses to vaccination are tested in clinical trials. This process usually requires years especially when immune memory and persistence are analyzed. Markers able to quickly predict the immune response would be very useful, particularly when dealing with emerging diseases that require a rapid response, such as avian influenza. To address this question we vaccinated healthy adults at days 1, 22, and 202 with plain or MF59-adjuvanted H5N1 subunit vaccines and tested both cell-mediated and antibody responses up to day 382. Only the MF59-H5N1 vaccine induced high titers of neutralizing antibodies, a large pool of memory H5N1-specific B lymphocytes, and H5-CD4+ T cells broadly reactive with drifted H5. The CD4+ response was dominated by IL-2+ IFN-γ− IL-13− T cells. Remarkably, a 3-fold increase in the frequency of virus-specific total CD4+ T cells, measurable after 1 dose, accurately predicted the rise of neutralizing antibodies after booster immunization and their maintenance 6 months later. We suggest that CD4+ T cell priming might be used as an early predictor of the immunogenicity of prepandemic vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen

Enrico Malito; Agnese Faleri; Paola Lo Surdo; Daniele Veggi; Giulietta Maruggi; Eva Grassi; Elena Cartocci; Isabella Bertoldi; Alessia Genovese; Laura Santini; Giacomo Romagnoli; Erica Borgogni; Sébastien Brier; Carla Lo Passo; Maria Domina; Flora Castellino; Franco Felici; Stijn van der Veen; Steven Johnson; Susan M. Lea; Christoph M. Tang; Mariagrazia Pizza; Silvana Savino; Nathalie Norais; Rino Rappuoli; Matthew J. Bottomley; Vega Masignani

Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen–antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å2 on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen–antibody interfaces are required to understand and design effective immunogens.


Blood | 2009

Human plasmacytoid dendritic cells are unresponsive to bacterial stimulation and require a novel type of cooperation with myeloid dendritic cells for maturation

Diego Piccioli; Chiara Sammicheli; Simona Tavarini; Sandra Nuti; Elisabetta Frigimelica; Andrea G. O. Manetti; Annalisa Nuccitelli; Susanna Aprea; Sara Valentini; Erica Borgogni; Andreas Wack; Nicholas M. Valiante

Dendritic cell (DC) populations play unique and essential roles in the detection of pathogens, but information on how different DC types work together is limited. In this study, 2 major DC populations of human blood, myeloid (mDCs) and plasmacytoid (pDCs), were cultured alone or together in the presence of pathogens or their products. We show that pDCs do not respond to whole bacteria when cultured alone, but mature in the presence of mDCs. Using purified stimuli, we dissect this cross-talk and demonstrate that mDCs and pDCs activate each other in response to specific induction of only one of the cell types. When stimuli for one or both populations are limited, they synergize to reach optimal activation. The cross-talk is limited to enhanced antigen presentation by the nonresponsive population with no detectable changes in the quantity and range of cytokines produced. We propose that each population can be a follower or leader in immune responses against pathogen infections, depending on their ability to respond to infectious agents. In addition, our results indicate that pDCs play a secondary role to induce immunity against human bacterial infections, which has implications for more efficient targeting of DC populations with improved vaccines and therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Human circulating influenza-CD4+ ICOS1+IL-21+ T cells expand after vaccination, exert helper function, and predict antibody responses

Fabiana Spensieri; Erica Borgogni; Luisanna Zedda; Monia Bardelli; Francesca Buricchi; Gianfranco Volpini; Elena Fragapane; Simona Tavarini; Oretta Finco; Rino Rappuoli; Giuseppe Del Giudice; Grazia Galli; Flora Castellino

Protection against influenza is mediated by neutralizing antibodies, and their induction at high and sustained titers is key for successful vaccination. Optimal B cells activation requires delivery of help from CD4+ T lymphocytes. In lymph nodes and tonsils, T-follicular helper cells have been identified as the T cells subset specialized in helping B lymphocytes, with interleukin-21 (IL-21) and inducible costimulatory molecule (ICOS1) playing a central role for this function. We followed the expansion of antigen-specific IL-21+ CD4+ T cells upon influenza vaccination in adults. We show that, after an overnight in vitro stimulation, influenza-specific IL-21+ CD4+ T cells can be measured in human blood, accumulate in the CXCR5−ICOS1+ population, and increase in frequency after vaccination. The expansion of influenza-specific ICOS1+IL-21+ CD4+ T cells associates with and predicts the rise of functionally active antibodies to avian H5N1. We also show that blood-derived CXCR5−ICOS1+ CD4+ T cells exert helper function in vitro and support the differentiation of influenza specific B cells in an ICOS1- and IL-21–dependent manner. We propose that the expansion of antigen-specific ICOS1+IL-21+ CD4+ T cells in blood is an early marker of vaccine immunogenicity and an important immune parameter for the evaluation of novel vaccination strategies.


Vaccine | 2012

One dose of an MF59-adjuvanted pandemic A/H1N1 vaccine recruits pre-existing immune memory and induces the rapid rise of neutralizing antibodies.

Elisa Faenzi; Luisanna Zedda; Monia Bardelli; Fabiana Spensieri; Erica Borgogni; Gianfranco Volpini; Francesca Buricchi; Franco Laghi Pasini; Pier Leopoldo Capecchi; Fabio Montanaro; Riccardo Belli; Maria Lattanzi; Simona Piccirella; Emanuele Montomoli; Syed Sohail Ahmed; Rino Rappuoli; Giuseppe Del Giudice; Oretta Finco; Flora Castellino; Grazia Galli

Protective antibody responses to a single dose of 2009 pandemic vaccines have been observed in the majority of healthy subjects aged more than 3 years. These findings suggest that immune memory lymphocytes primed by previous exposure to seasonal influenza antigens are recruited in the response to A/H1N1 pandemic vaccines and allow rapid seroconversion. However, a clear dissection of the immune memory components favoring a fast response to pandemic vaccination is still lacking. Here we report the results from a clinical study where antibody, CD4+ T cell, plasmablast and memory B cell responses to one dose of an MF59-adjuvanted A/H1N1 pandemic vaccine were analyzed in healthy adults. While confirming the rapid appearance of antibodies neutralizing the A/H1N1 pandemic virus, we show here that the response is dominated by IgG-switched antibodies already in the first week after vaccination. In addition, we found that vaccination induces the rapid expansion of pre-existing CD4+ T cells and IgG-memory B lymphocytes cross-reactive to seasonal and pandemic A/H1N1 antigens. These data shed light on the different components of the immune response to the 2009 H1N1 pandemic influenza vaccination and may have implications in the design of vaccination strategies against future influenza pandemics.


PLOS ONE | 2016

Early Rise of Blood T Follicular Helper Cell Subsets and Baseline Immunity as Predictors of Persisting Late Functional Antibody Responses to Vaccination in Humans.

Fabiana Spensieri; Emilio Siena; Erica Borgogni; Luisanna Zedda; Rocco Cantisani; Nico Chiappini; Francesca Schiavetti; Domenico Rosa; Flora Castellino; Emanuele Montomoli; Caroline L. Bodinham; David J. M. Lewis; Duccio Medini; Sylvie Bertholet; Giuseppe Del Giudice

CD4+ T follicular helper cells (TFH) have been identified as the T-cell subset specialized in providing help to B cells for optimal activation and production of high affinity antibody. We recently demonstrated that the expansion of peripheral blood influenza-specific CD4+IL-21+ICOS1+ T helper (TH) cells, three weeks after vaccination, associated with and predicted the rise of protective neutralizing antibodies to avian H5N1. In this study, healthy adults were vaccinated with plain seasonal trivalent inactivated influenza vaccine (TIIV), MF59®-adjuvanted TIIV (ATIIV), or saline placebo. Frequencies of circulating CD4+ TFH1 ICOS+ TFH cells and H1N1-specific CD4+IL-21+ICOS+ CXCR5+ TFH and CXCR5- TH cell subsets were determined at various time points after vaccination and were then correlated with hemagglutination inhibition (HI) titers. All three CD4+ T cell subsets expanded in response to TIIV and ATIIV, and peaked 7 days after vaccination. To demonstrate that these TFH cell subsets correlated with functional antibody titers, we defined an alternative endpoint metric, decorrelated HI (DHI), which removed any correlation between day 28/day 168 and day 0 HI titers, to control for the effect of preexisting immunity to influenza vaccine strains. The numbers of total circulating CD4+ TFH1 ICOS+ cells and of H1N1-specific CD4+IL-21+ICOS+ CXCR5+, measured at day 7, were significantly associated with day 28, and day 28 and 168 DHI titers, respectively. Altogether, our results show that CD4+ TFH subsets may represent valuable biomarkers of vaccine-induced long-term functional immunity. Trial Registration ClinicalTrials.gov NCT01771367


PLOS ONE | 2014

Rapid Profiling of the Antigen Regions Recognized by Serum Antibodies Using Massively Parallel Sequencing of Antigen-Specific Libraries

Maria Domina; Veronica Lanza Cariccio; Salvatore Benfatto; Deborah D'Aliberti; Mario Venza; Erica Borgogni; Flora Castellino; Carmelo Biondo; Daniel D'Andrea; Luigi Grassi; Anna Tramontano; Giuseppe Teti; Franco Felici; Concetta Beninati

There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.


PLOS ONE | 2016

Epitope mapping of a monoclonal antibody directed against Neisserial Heparin Binding Antigen using next generation sequencing of antigen-specific libraries

Maria Domina; Veronica Lanza Cariccio; Salvatore Benfatto; Mario Venza; Isabella Venza; Danilo Donnarumma; Erika Bartolini; Erica Borgogni; Marco Bruttini; Laura Santini; Angelina Midiri; Roberta Galbo; Letizia Romeo; Francesco Patanè; Carmelo Biondo; Nathalie Norais; Vega Masignani; Giuseppe Teti; Franco Felici; Concetta Beninati

We explore here the potential of a newly described technology, which is named PROFILER and is based on next generation sequencing of gene-specific lambda phage-displayed libraries, to rapidly and accurately map monoclonal antibody (mAb) epitopes. For this purpose, we used a novel mAb (designated 31E10/E7) directed against Neisserial Heparin-Binding Antigen (NHBA), a component of the anti-group B meningococcus Bexsero® vaccine. An NHBA phage-displayed library was affinity-selected with mAb 31E10/E7, followed by massive sequencing of the inserts present in antibody-selected phage pools. Insert analysis identified an amino acid stretch (D91-A128) in the N-terminal domain, which was shared by all of the mAb-enriched fragments. Moreover, a recombinant fragment encompassing this sequence could recapitulate the immunoreactivity of the entire NHBA molecule against mAb 31E10/E7. These results were confirmed using a panel of overlapping recombinant fragments derived from the NHBA vaccine variant and a set of chemically synthetized peptides covering the 10 most frequent antigenic variants. Furthermore, hydrogen-deuterium exchange mass-spectrometry analysis of the NHBA-mAb 31E10/E7 complex was also compatible with mapping of the epitope to the D91-A128 region. Collectively, these results indicate that the PROFILER technology can reliably identify epitope-containing antigenic fragments and requires considerably less work, time and reagents than other epitope mapping methods.


mAbs | 2016

Phage display revisited: Epitope mapping of a monoclonal antibody directed against Neisseria meningitidis adhesin A using the PROFILER technology.

Veronica Lanza Cariccio; Maria Domina; Salvatore Benfatto; Mario Venza; Isabella Venza; Agnese Faleri; Bruttini M; Erika Bartolini; Giuliani Mm; Laura Santini; Brunelli B; Nathalie Norais; Erica Borgogni; Angelina Midiri; Roberta Galbo; Letizia Romeo; Carmelo Biondo; Masignani; Giuseppe Teti; Franco Felici; Concetta Beninati

ABSTRACT There is a strong need for rapid and reliable epitope mapping methods that can keep pace with the isolation of increasingly larger numbers of mAbs. We describe here the identification of a conformational epitope using Phage-based Representation OF ImmunoLigand Epitope Repertoire (PROFILER), a recently developed high-throughput method based on deep sequencing of antigen-specific lambda phage-displayed libraries. A novel bactericidal monoclonal antibody (mAb 9F11) raised against Neisseria meningitidis adhesin A (NadA), an important component of the Bexsero® anti-meningococcal vaccine, was used to evaluate the technique in comparison with other epitope mapping methods. The PROFILER technology readily identified NadA fragments that were capable of fully recapitulating the reactivity of the entire antigen against mAb 9F11. Further analysis of these fragments using mutagenesis and hydrogen-deuterium exchange mass-spectrometry allowed us to identify the binding site of mAb 9F11 (A250-D274) and an adjoining sequence (V275-H312) that was also required for the full functional reconstitution of the epitope. These data suggest that, by virtue of its ability to detect a great variety of immunoreactive antigen fragments in phage-displayed libraries, the PROFILER technology can rapidly and reliably identify epitope-containing regions and provide, in addition, useful clues for the functional characterization of conformational mAb epitopes.


Scientific Reports | 2016

Functional characterization of a monoclonal antibody epitope using a lambda phage display-deep sequencing platform

Maria Domina; Veronica Lanza Cariccio; Salvatore Benfatto; Mario Venza; Isabella Venza; Erica Borgogni; Flora Castellino; Angelina Midiri; Roberta Galbo; Letizia Romeo; Carmelo Biondo; Vega Masignani; Giuseppe Teti; Franco Felici; Concetta Beninati

We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete “hot spots” with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope.

Collaboration


Dive into the Erica Borgogni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabiana Spensieri

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge