Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erica Lumini is active.

Publication


Featured researches published by Erica Lumini.


Environmental Microbiology | 2009

Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach.

Erica Lumini; Alberto Orgiazzi; Roberto Borriello; Paola Bonfante; Valeria Bianciotto

The biodiversity of arbuscular mycorrhizal fungi (AMF) communities present in five Sardinian soils (Italy) subjected to different land-use (tilled vineyard, covered vineyard, pasture, managed meadow and cork-oak formation) was analysed using a pyrosequencing-based approach for the first time. Two regions of the 18S ribosomal RNA gene were considered as molecular target. The pyrosequencing produced a total of 10924 sequences: 6799 from the first and 4125 from the second target region. Among these sequences, 3189 and 1003 were selected to generate operational taxonomic units (OTUs) and to evaluate the AMF community richness and similarity: 117 (37 of which were singletons) and 28 (nine of which were singletons) unique AMF OTUs were detected respectively. Within the Glomeromycota OTUs, those belonging to the Glomerales order were dominant in all the soils. Diversisporales OTUs were always detected, even though less frequently, while Archaeosporales and Paraglomerales OTUs were exclusive of the pasture soil. Eleven OTUs were shared by all the soils, but each of the five AMF communities showed particular features, suggesting a meaningful dissimilarity among the Glomeromycota populations. The environments with low inputs (pasture and covered vineyard) showed a higher AMF biodiversity than those subjected to human input (managed meadow and tilled vineyard). A reduction in AMF was found in the cork-oak formation because other mycorrhizal fungal species, more likely associated to trees and shrubs, were detected. These findings reinforce the view that AMF biodiversity is influenced by both human input and ecological traits, illustrating a gradient of AMF communities which mirror the land-use gradient. The high number of sequences obtained by the pyrosequencing strategy has provided detailed information on the soil AMF assemblages, thus offering a source of light to shine on this crucial soil microbial group.


Ecological Applications | 2008

The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops

M.M. Alguacil; Erica Lumini; A. Roldán; J. R. Salinas-García; Paola Bonfante; V. Bianciotto

Arbuscular mycorrhizal fungi (AMF) are a main component of soil microbiota in most agrosystems. As obligately mutualistic symbionts, they colonize the roots of the majority of plants, including crop plants. We used molecular techniques to investigate how different tillage systems (moldboard, shred-bedding, subsoil-bedding, and no tillage) can influence the AM fungal community colonizing maize, bean, and sorghum roots in an experimental site located in northern Tamaulipas, Mexico. Roots from 36 plants were analyzed using AM fungal-specific primers to partially amplify the small subunit (SSU) of the ribosomal DNA genes. More than 880 clones were screened for restriction fragment length polymorphism (RFLP) variation, and 173 of these were sequenced. Ten AM fungal types were identified and clustered into three AM fungal families: Gigasporaceae, Glomaceae, and Paraglomaceae. Glomus was the dominating taxon in all the samples. Four of the 10 identified types were distinct from any previously published sequences and could correspond to either known unsequenced species or unknown species. The fungal diversity was low in the four agriculture management systems, but the multidimensional scaling (MDS) analysis and log-linear-saturated model indicated that the composition of the AMF community was significantly affected by the tillage system. In conclusion, since some fungal types were treatment specific, agricultural practices could directly or indirectly influence AM biodiversity.


Applied and Environmental Microbiology | 2000

Detection and Identification of Bacterial Endosymbionts in Arbuscular Mycorrhizal Fungi Belonging to the Family Gigasporaceae

Valeria Bianciotto; Erica Lumini; Luisa Lanfranco; Daniela Minerdi; Paola Bonfante; Silvia Perotto

ABSTRACT Intracellular bacteria have been found previously in one isolate of the arbuscular mycorrhizal (AM) fungus Gigaspora margaritaBEG 34. In this study, we extended our investigation to 11 fungal isolates obtained from different geographic areas and belonging to six different species of the family Gigasporaceae. With the exception ofGigaspora rosea, isolates of all of the AM species harbored bacteria, and their DNA could be PCR amplified with universal bacterial primers. Primers specific for the endosymbiotic bacteria of BEG 34 could also amplify spore DNA from four species. These specific primers were successfully used as probes for in situ hybridization of endobacteria in G. margarita spores. Neighbor-joining analysis of the 16S ribosomal DNA sequences obtained from isolates ofScutellospora persica, Scutellospora castanea, and G. margarita revealed a single, strongly supported branch nested in the genus Burkholderia.


Cellular Microbiology | 2007

Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria

Erica Lumini; Valeria Bianciotto; Patricia Jargeat; Mara Novero; Alessandra Salvioli; Antonella Faccio; Guillaume Bécard; Paola Bonfante

Some arbuscular mycorrhizal fungi contain endocellular bacteria. In Gigaspora margarita BEG 34, a homogenous population of β‐Proteobacteria is hosted inside the fungal spore. The bacteria, named Candidatus Glomeribacter gigasporarum, are vertically transmitted through fungal spore generations. Here we report how a protocol based on repeated passages through single‐spore inocula caused dilution of the initial bacterial population eventually leading to cured spores. Spores of this line had a distinct phenotype regarding cytoplasm organization, vacuole morphology, cell wall organization, lipid bodies and pigment granules. The absence of bacteria severely affected presymbiotic fungal growth such as hyphal elongation and branching after root exudate treatment, suggesting that Ca. Glomeribacter gigasporarum is important for optimal development of its fungal host. Under laboratory conditions, the cured fungus could be propagated, i.e. could form mycorrhizae and sporulate, and can therefore be considered as a stable variant of the wild type. The results demonstrated that – at least for the G. margarita BEG 34 isolate – the absence of endobacteria affects the spore phenotype of the fungal host, and causes delays in the growth of germinating mycelium, possibly affecting its ecological fitness. This cured line is the first manipulated and stable isolate of an arbuscular mycorrhizal fungus.


American Journal of Botany | 2007

Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis

Roberto Ligrone; Anna Carafa; Erica Lumini; Valeria Bianciotto; Paola Bonfante; Jeffrey G. Duckett

Liverworts form endophytic associations with fungi that mirror mycorrhizal associations in tracheophytes. Here we report a worldwide survey of liverwort associations with glomeromycotean fungi (GAs), together with a comparative molecular and cellular analysis in representative species. Liverwort GAs are circumscribed by a basal assemblage embracing the Haplomitriopsida, the Marchantiopsida (except a few mostly derived clades), and part of the Metzgeriidae. Fungal endophytes from Haplomitrium, Conocephalum, Fossombronia, and Pellia were related to Glomus Group A, while the endophyte from Monoclea was related to Acaulospora. An isolate of G. mosseae colonized axenic thalli of Conocephalum, producing an association similar to that in the wild. Fungal colonization in marchantialean liverworts suppressed cell wall autofluorescence and elicited the deposition of a new wall layer that specifically bound the monoclonal antibody CCRC-M1 against fucosylated side groups associated with xyloglucan and rhamnogalacturonan I. The interfacial material covering the intracellular fungus contained the same epitopes present in host cell walls. The taxonomic distribution and cytology of liverwort GAs suggest an ancient origin and multiple more recent losses, but the occurence in widely separated liverwort taxa of fungi related to glomeromycotean lineages that form arbuscular mycorrhizas in tracheophytes, notably the Glomus Group A, is better explained by host shifting from tracheophytes to liverworts.


Applied and Environmental Microbiology | 2004

Vertical Transmission of Endobacteria in the Arbuscular Mycorrhizal Fungus Gigaspora margarita through Generation of Vegetative Spores

V. Bianciotto; Andrea Genre; Patricia Jargeat; Erica Lumini; Guillaume Bécard; Paola Bonfante

ABSTRACT Arbuscular mycorrhizal (AM) fungi living in symbiotic association with the roots of vascular plants have also been shown to host endocellular rod-shaped bacteria. Based on their ribosomal sequences, these endobacteria have recently been identified as a new taxon, Candidatus Glomeribacter gigasporarum. In order to investigate the cytoplasmic stability of the endobacteria in their fungal host and their transmission during AM fungal reproduction (asexual), a system based on transformed carrot roots and single-spore inocula of Gigaspora margarita was used. Under these in vitro sterile conditions, with no risk of horizontal contamination, the propagation of endobacteria could be monitored, and it was shown, by using primers designed for both 16S and 23S ribosomal DNAs, to occur through several vegetative spore generations (SG0 to SG4). A method of confocal microscopy for quantifying the density of endobacteria in spore cytoplasm was designed and applied; endobacteria were consistently found in all of the spore generations, although their number rapidly decreased from SG0 to SG4. The study demonstrates that a vertical transmission of endobacteria takes place through the fungal vegetative generations (sporulation) of an AM fungus, indicating that active bacterial proliferation occurs in the coenocytic mycelium of the fungus, and suggests that these bacteria are obligate endocellular components of their AM fungal host.


Frontiers in Microbiology | 2016

Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes

Andrea Berruti; Erica Lumini; Raffaella Balestrini; V. Bianciotto

Arbuscular Mycorrhizal Fungi (AMF) constitute a group of root obligate biotrophs that exchange mutual benefits with about 80% of plants. They are considered natural biofertilizers, since they provide the host with water, nutrients, and pathogen protection, in exchange for photosynthetic products. Thus, AMF are primary biotic soil components which, when missing or impoverished, can lead to a less efficient ecosystem functioning. The process of re-establishing the natural level of AMF richness can represent a valid alternative to conventional fertilization practices, with a view to sustainable agriculture. The main strategy that can be adopted to achieve this goal is the direct re-introduction of AMF propagules (inoculum) into a target soil. Originally, AMF were described to generally lack host- and niche-specificity, and therefore suggested as agriculturally suitable for a wide range of plants and environmental conditions. Unfortunately, the assumptions that have been made and the results that have been obtained so far are often worlds apart. The problem is that success is unpredictable since different plant species vary their response to the same AMF species mix. Many factors can affect the success of inoculation and AMF persistence in soil, including species compatibility with the target environment, the degree of spatial competition with other soil organisms in the target niche and the timing of inoculation. Thus, it is preferable to take these factors into account when “tuning” an inoculum to a target environment in order to avoid failure of the inoculation process. Genomics and transcriptomics have led to a giant step forward in the research field of AMF, with consequent major advances in the current knowledge on the processes involved in their interaction with the host-plant and other soil organisms. The history of AMF applications in controlled and open-field conditions is now long. A review of biofertilization experiments, based on the use of AMF, has here been proposed, focusing on a few important factors that could increase the odds or jeopardize the success of the inoculation process.


The ISME Journal | 2012

The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions

Stefano Ghignone; Alessandra Salvioli; Iulia Anca; Erica Lumini; G. Ortu; Luca Petiti; Stéphane Cruveiller; Valeria Bianciotto; Pietro Piffanelli; Luisa Lanfranco; Paola Bonfante

As obligate symbionts of most land plants, arbuscular mycorrhizal fungi (AMF) have a crucial role in ecosystems, but to date, in the absence of genomic data, their adaptive biology remains elusive. In addition, endobacteria are found in their cytoplasm, the role of which is unknown. In order to investigate the function of the Gram-negative Candidatus Glomeribacter gigasporarum, an endobacterium of the AMF Gigaspora margarita, we sequenced its genome, leading to an ∼1.72-Mb assembly. Phylogenetic analyses placed Ca. G. gigasporarum in the Burkholderiaceae whereas metabolic network analyses clustered it with insect endobacteria. This positioning of Ca. G. gigasporarum among different bacterial classes reveals that it has undergone convergent evolution to adapt itself to intracellular lifestyle. The genome annotation of this mycorrhizal-fungal endobacterium has revealed an unexpected genetic mosaic where typical determinants of symbiotic, pathogenic and free-living bacteria are integrated in a reduced genome. Ca. G. gigasporarum is an aerobic microbe that depends on its host for carbon, phosphorus and nitrogen supply; it also expresses type II and type III secretion systems and synthesizes vitamin B12, antibiotics- and toxin-resistance molecules, which may contribute to the fungal hosts ecological fitness. Ca. G. gigasporarum has an extreme dependence on its host for nutrients and energy, whereas the fungal host is itself an obligate biotroph that relies on a photosynthetic plant. Our work represents the first step towards unraveling a complex network of interphylum interactions, which is expected to have a previously unrecognized ecological impact.


PLOS ONE | 2012

Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds

Alberto Orgiazzi; Erica Lumini; R. Henrik Nilsson; Mariangela Girlanda; Alfredo Vizzini; Paola Bonfante; V. Bianciotto

Background Fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. The Mediterranean area is a biodiversity hotspot that is increasingly threatened by intense land use. Therefore, to achieve a balance between conservation and human development, a better understanding of the impact of land use on the underlying fungal communities is needed. Methodology/Principal Findings We used parallel pyrosequencing of the nuclear ribosomal ITS regions to characterize the fungal communities in five soils subjected to different anthropogenic impact in a typical Mediterranean landscape: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards. Marked differences in the distribution of taxon assemblages among the different sites and communities were found. Data analyses consistently indicated a sharp distinction of the fungal community of the cork oak forest soil from those described in the other soils. Each soil showed features of the fungal assemblages retrieved which can be easily related to the above-ground settings: ectomycorrhizal phylotypes were numerous in natural sites covered by trees, but were nearly completely missing from the anthropogenic and grass-covered sites; similarly, coprophilous fungi were common in grazed sites. Conclusions/Significance Data suggest that investigation on the below-ground fungal community may provide useful elements on the above-ground features such as vegetation coverage and agronomic procedures, allowing to assess the cost of anthropogenic land use to hidden diversity in soil. Datasets provided in this study may contribute to future searches for fungal bio-indicators as biodiversity markers of a specific site or a land-use degree.


Biology and Fertility of Soils | 2012

Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach

Roberto Borriello; Erica Lumini; Mariangela Girlanda; Paola Bonfante; Valeria Bianciotto

As obligate mutualistic symbionts, arbuscular mycorrhizal fungi (AMF) colonize the roots of many agricultural crops, and it is often claimed that agricultural practices are detrimental to AMF. As a result, agroecosystems impoverished in AMF may not get the fully expected range of benefits from these fungi. Using molecular markers on DNA extracted directly from soil and roots, we studied the effects of different management practices (tillage and N fertilization) on the AMF communities colonizing an experimental maize field in Central Italy. Our molecular analysis based on three different nuclear rRNA regions (18S, 28S and ITS) allowed us to assess AMF biodiversity. Glomeraceae members were the main colonizer, and they co-occurred with Gigasporaceae and Paraglomus regardless of the management practices applied. Diversisporaceae and Entrophosporaceae members were instead detected in the N-fertilized soils and in the untreated soil, respectively. The results obtained indicated that the general AMF assemblages structure and composition in the maize field plots appear to be primarily influenced by N fertilization and, to a lesser extent, by tillage. This study also validates the usefulness of multiple molecular markers to consolidate and refine the assessment of the environmental AMF diversity.

Collaboration


Dive into the Erica Lumini's collaboration.

Top Co-Authors

Avatar

Paola Bonfante

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Bianciotto

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Andrea Berruti

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge