Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erich Giedzinski is active.

Publication


Featured researches published by Erich Giedzinski.


Proceedings of the National Academy of Sciences of the United States of America | 2002

UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, γ-H2AX formation, and Mre11 relocalization

Charles L. Limoli; Erich Giedzinski; William M. Bonner; James E. Cleaver

UV-induced replication arrest in the xeroderma pigmentosum variant (XPV) but not in normal cells leads to an accumulation of the Mre11/Rad50/Nbs1 complex and phosphorylated histone H2AX (γ-H2AX) in large nuclear foci at sites of stalled replication forks. These complexes have been shown to signal the presence of DNA damage, in particular, double-strand breaks (DSBs). This finding suggests that UV damage leads to the formation of DSBs during the course of replication arrest. After UV irradiation, XPV cells showed a fluence-dependent increase in the yield of γ-H2AX foci that paralleled the production of Mre11 foci. The percentage of foci-positive cells increased rapidly (10–15%) up to fluences of 10 J⋅m−2 before saturating at higher fluences. Frequencies of γ-H2AX and Mre11 foci both reached maxima at 4 h after UV irradiation. This pattern contrasts sharply to the situation observed after x-irradiation, where peak levels of γ-H2AX foci were found to precede the formation of Mre11 foci by several hours. The nuclear distributions of γ-H2AX and Mre11 were found to colocalize spatially after UV- but not x-irradiation. UV-irradiated XPV cells showed a one-to-one correspondence between Mre11 and γ-H2AX foci-positive cells. These results show that XPV cells develop DNA DSBs during the course of UV-induced replication arrest. These UV-induced foci occur in cells that are unable to carry out efficient bypass replication of UV damage and may contribute to further genetic variation.


Radiation Research | 2004

Radiation Response of Neural Precursor Cells: Linking Cellular Sensitivity to Cell Cycle Checkpoints, Apoptosis and Oxidative Stress

Charles L. Limoli; Erich Giedzinski; Radoslaw Rola; Shinji Otsuka; Theo D. Palmer; John R. Fike

Abstract Limoli, C. L., Giedzinski, E., Rola, R., Otsuka, S., Palmer, T. D. and Fike, J. R. Radiation Response of Neural Precursor Cells: Linking Cellular Sensitivity to Cell Cycle Checkpoints, Apoptosis and Oxidative Stress. Radiat. Res. 161, 17–27 (2004). Therapeutic irradiation of the brain can cause a progressive cognitive dysfunction that may involve defects in neurogenesis. In an effort to understand the mechanisms underlying radiation-induced stem cell dysfunction, neural precursor cells isolated from the adult rat hippocampus were analyzed for acute (0–24 h) and chronic (3–33 days) changes in apoptosis and reactive oxygen species (ROS) after exposure to X rays. Irradiated neural precursor cells exhibited an acute dose-dependent apoptosis accompanied by an increase in ROS that persisted over a 3–4-week period. The radiation effects included the activation of cell cycle checkpoints that were associated with increased Trp53 phosphorylation and Trp53 and p21 (Cdkn1a) protein levels. In vivo, neural precursor cells within the hippocampal dentate subgranular zone exhibited significant sensitivity to radiation. Proliferating precursor cells and their progeny (i.e. immature neurons) exhibited dose-dependent reductions in cell number. These reductions were less severe in Trp53-null mice, possibly due to the disruption of apoptosis. These data suggest that the apoptotic and ROS responses may be tied to Trp53-dependent regulation of cell cycle control and stress-activated pathways. The temporal coincidence between in vitro and in vivo measurements of apoptosis suggests that oxidative stress may provide a mechanistic explanation for radiation-induced inhibition of neurogenesis in the development of cognitive impairment.


Advances in Space Research | 2000

Genomic instability induced by high and low LET ionizing radiation.

Charles L. Limoli; B. Ponnaiya; James Corcoran; Erich Giedzinski; Mark I. Kaplan; Andreas Hartmann; William F. Morgan

Genomic instability is the increased rate of acquisition of alterations in the mammalian genome, and includes such diverse biological endpoints as chromosomal destabilization, aneuploidy, micronucleus formation, sister chromatid exchange, gene mutation and amplification, variations in colony size, reduced plating efficiency, and cellular transformation. Because these multiple endpoints persist long after initial radiation exposure, genomic instability has been proposed to operate as a driving force contributing to genetic plasticity and carcinogenic potential. Many of these radiation-induced endpoints depend qualitatively and quantitatively on genetic background, dose and LET. Differences in the frequency and temporal expression of chromosomal instability depend on all three of the foregoing factors. On the other hand, many of these endpoints appear independent of dose and show bystander effects, implicating non-nuclear targets and epigenetic regulatory mechanisms. The present work will survey results concerning the LET dependence of genomic instability and the role of epigenetic mechanisms, with a particular emphasis on the endpoint of chromosomal instability.


Free Radical Biology and Medicine | 2001

Attenuation of radiation-induced genomic instability by free radical scavengers and cellular proliferation.

Charles L. Limoli; Mark I. Kaplan; Erich Giedzinski; William F. Morgan

To investigate the mechanisms of radiation-induced chromosomal instability, cells were irradiated in the presence of the free radical scavengers DMSO, glycerol, or cysteamine, in the presence of DMSO while frozen, or held in confluence arrest post-irradiation to permit cells to repair potentially lethal DNA damage. Clones derived from single progenitor cells surviving each treatment were then analyzed for the subsequent development of chromosomal instability. The presence of scavengers (+/- freezing) during irradiation, and the recovery from potentially lethal damage after irradiation led to an increase in cell survival that was accompanied by a decrease in the initial yield of chromosomal rearrangements. Furthermore, analysis of over 400 clones and 80,000 metaphases indicates that these same treatments reduced the incidence of instability at equitoxic doses when compared to controls irradiated in the absence of scavengers at ambient temperature. Results suggest that preventing reactive species from damaging DNA, promoting chemical repair of ionized DNA intermediates, or allowing enzymatic removal of genetic lesions, represent measures that reduce the total burden of DNA damage and reduce the subsequent onset of radiation-induced genomic instability.


Free Radical Biology and Medicine | 2010

Consequences of ionizing radiation-induced damage in human neural stem cells.

Munjal M. Acharya; Mary L. Lan; Vickie H. Kan; Neal H. Patel; Erich Giedzinski; Bertrand P. Tseng; Charles L. Limoli

Cranial irradiation remains a frontline treatment for brain cancer, but also leads to normal tissue damage. Although low-dose irradiation (≤10 Gy) causes minimal histopathologic change, it can elicit variable degrees of cognitive dysfunction that are associated with the depletion of neural stem cells. To decipher the mechanisms underlying radiation-induced stem cell dysfunction, human neural stem cells (hNSCs) subjected to clinically relevant irradiation (0-5 Gy) were analyzed for survival parameters, cell-cycle alterations, DNA damage and repair, and oxidative stress. hNSCs showed a marked sensitivity to low-dose irradiation that was in part due to elevated apoptosis and the inhibition of cell-cycle progression that manifested as a G2/M checkpoint delay. Efficient removal of DNA double-strand breaks was indicated by the disappearance of γ-H2AX nuclear foci. A dose-responsive and persistent increase in oxidative and nitrosative stress was found in irradiated hNSCs, possibly the result of a higher metabolic activity in the fraction of surviving cells. These data highlight the marked sensitivity of hNSCs to low-dose irradiation and suggest that long-lasting perturbations in the CNS microenvironment due to radiation-induced oxidative stress can compromise the functionality of neural stem cells.


Neoplasia | 2003

Induction of Chromosomal Instability by Chronic Oxidative Stress

Charles L. Limoli; Erich Giedzinski

Earlier studies using GM10115 cells analyzed the capability of different DNA-damaging agents to induce genomic instability and found that acute oxidative stress was relatively inefficient at eliciting a persistent destabilization of chromosomes. To determine whether this situation would change under chronic exposure conditions, the human-hamster hybrid line GM10115 was cultured under conditions of oxidative stress. Chronic treatments consisted of 1-hour incubations using a range of hydrogen peroxide (25-200 microM) or glucose oxidase (GO; 5-50 mU/ml) concentrations that were administered once daily over 10 to 30 consecutive days. The toxicity of chronic treatments was modest (- one log kill) and consistent with the low yield of first division aberrations (<5%). However, analysis of over 180 clones and 36,000 metaphases indicated that chronic oxidative stress led to a high incidence of chromosomal instability. Treatment of cells with 100 and 200 microM hydrogen peroxide or 50 mU/ml GO was found to elicit chromosomal instability in 11%, 22%, and 19% of the clones analyzed, respectively. In contrast, control clones isolated after mock treatment did not show signs of chromosomal destabilization. These data suggest that chronic oxidative stress constitutes a biochemical mechanism capable of disrupting the genomic integrity of cells.


Cancer Research | 2011

Human Neural Stem Cell Transplantation Ameliorates Radiation-Induced Cognitive Dysfunction

Munjal M. Acharya; Lori-Ann Christie; Mary L. Lan; Erich Giedzinski; John R. Fike; Susanna Rosi; Charles L. Limoli

Cranial radiotherapy induces progressive and debilitating declines in cognition that may, in part, be caused by the depletion of neural stem cells. The potential of using stem cell replacement as a strategy to combat radiation-induced cognitive decline was addressed by irradiating athymic nude rats followed 2 days later by intrahippocampal transplantation with human neural stem cells (hNSC). Measures of cognitive performance, hNSC survival, and phenotypic fate were assessed at 1 and 4 months after irradiation. Irradiated animals engrafted with hNSCs showed significantly less decline in cognitive function than irradiated, sham-engrafted animals and acted indistinguishably from unirradiated controls. Unbiased stereology revealed that 23% and 12% of the engrafted cells survived 1 and 4 months after transplantation, respectively. Engrafted cells migrated extensively, differentiated along glial and neuronal lineages, and expressed the activity-regulated cytoskeleton-associated protein (Arc), suggesting their capability to functionally integrate into the hippocampus. These data show that hNSCs afford a promising strategy for functionally restoring cognition in irradiated animals.


Antioxidants & Redox Signaling | 2014

Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation

Bertrand P. Tseng; Erich Giedzinski; Atefeh Izadi; Tatiana Suarez; Mary L. Lan; Katherine K. Tran; Munjal M. Acharya; Gregory A. Nelson; Jacob Raber; Vipan K. Parihar; Charles L. Limoli

AIMS Redox homeostasis is critical in regulating the fate and function of multipotent cells in the central nervous system (CNS). Here, we investigated whether low dose charged particle irradiation could elicit oxidative stress in neural stem and precursor cells and whether radiation-induced changes in redox metabolism would coincide with cognitive impairment. RESULTS Low doses (<1 Gy) of charged particles caused an acute and persistent oxidative stress. Early after (<1 week) irradiation, increased levels of reactive oxygen and nitrogen species were generally dose responsive, but were less dependent on dose weeks to months thereafter. Exposure to ion fluences resulting in less than one ion traversal per cell was sufficient to elicit radiation-induced oxidative stress. Whole body irradiation triggered a compensatory response in the rodent brain that led to a significant increase in antioxidant capacity 2 weeks following exposure, before returning to background levels at week 4. Low dose irradiation was also found to significantly impair novel object recognition in mice 2 and 12 weeks following irradiation. INNOVATION Data provide evidence that acute exposure of neural stem cells and the CNS to very low doses and fluences of charged particles can elicit a persisting oxidative stress lasting weeks to months that is associated with impaired cognition. CONCLUSIONS Exposure to low doses of charged particles causes a persistent oxidative stress and cognitive impairment over protracted times. Data suggest that astronauts subjected to space radiation may develop a heightened risk for mission critical performance decrements in space, along with a risk of developing long-term neurocognitive sequelae.


Radiation Research | 2005

Efficient Production of Reactive Oxygen Species in Neural Precursor Cells after Exposure to 250 MeV Protons

Erich Giedzinski; Radoslaw Rola; John R. Fike; Charles L. Limoli

Abstract Giedzinski, E., Rola, R., Fike, J. R. and Limoli, C. L. Efficient Production of Reactive Oxygen Species in Neural Precursor Cells after Exposure to 250 MeV Protons. Radiat. Res. 164, 540–544 (2005). The space radiation environment is composed of highly energetic ions, dominated by protons, that pose a range of potential health risks to astronauts. Traversals of these particles through certain tissues may compromise the viability and/or function of sensitive cells, including neural precursors found within the dentate subgranular zone of the hippocampus. Irradiation has been shown to deplete these cells in vivo, and reductions of these critical cells are believed to impair neurogenesis and cognition. To more fully understand the mechanisms underlying the behavior of these precursor cells after irradiation, we have developed an in vitro neural precursor cell system and used it to assess acute (0–48 h) changes in ROS and mitochondrial end points after exposure to Bragg-peak protons of 250 MeV. Relative ROS levels were increased at nearly all doses (1–10 Gy) and postirradiation times (6–24 h) compared to unirradiated controls. The increase in ROS after proton irradiation was more rapid than that observed with X rays and showed a well-defined dose response at 6 and 24 h, increasing approximately 10% and 3% per gray, respectively. However, by 48 h postirradiation, ROS levels fell below controls and coincided with minor reductions in mitochondrial content. Use of the antioxidant α-lipoic acid (before or after irradiation) was shown to eliminate the radiation-induced rise in ROS levels. Our results corroborate earlier studies using X rays and provide further evidence that elevated ROS are integral to the radioresponse of neural precursor cells.


International Journal of Radiation Biology | 2006

Altered growth and radiosensitivity in neural precursor cells subjected to oxidative stress

Charles L. Limoli; Erich Giedzinski; Jennifer Baure; Radoslaw Rola; John R. Fike

Purpose: To determine whether changes in oxidative stress could enhance the sensitivity of neural precursor cells to ionizing radiation. Materials and methods: Two strategies were used whereby oxidative stress was modulated endogenously, through manipulation cell culture density, or exogenously, through direct addition of hydrogen peroxide. Results: Cells subjected to increased endogenous oxidative stress through low-density growth routinely exhibited an inhibition of growth following irradiation. However, cells subjected to chronic exogenous oxidative treatments showed increased sensitivity to proton and γ-irradiation compared to untreated controls. Reduced survival of irradiated cultures subjected to oxidizing conditions was corroborated using enzymatic viability assays, and was observed over a range of doses (1 – 5 Gy) and post-irradiation re-seeding densities (20 – 200 K/plate). Conclusions: Collectively our results provide further support for the importance of redox state in the regulation of neural precursor cell function, and suggest that oxidative stress can inhibit the proliferative potential of cells through different mechanisms. This is likely to compromise survival and under conditions where excess exogenous oxidants might predominate, sensitivity to irradiation may be enhanced.

Collaboration


Dive into the Erich Giedzinski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Fike

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary L. Lan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge