Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erich Stoelben is active.

Publication


Featured researches published by Erich Stoelben.


Cell | 2012

Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing

Marcin Imielinski; Alice H. Berger; Peter S. Hammerman; Bryan Hernandez; Trevor J. Pugh; Eran Hodis; Jeonghee Cho; James Suh; Marzia Capelletti; Andrey Sivachenko; Carrie Sougnez; Daniel Auclair; Michael S. Lawrence; Petar Stojanov; Kristian Cibulskis; Kyusam Choi; Luc de Waal; Tanaz Sharifnia; Angela N. Brooks; Heidi Greulich; Shantanu Banerji; Thomas Zander; Danila Seidel; Frauke Leenders; Sascha Ansén; Corinna Ludwig; Walburga Engel-Riedel; Erich Stoelben; Jürgen Wolf; Chandra Goparju

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Science Translational Medicine | 2010

Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer

Jonathan M. Weiss; Martin L. Sos; Danila Seidel; Martin Peifer; Thomas Zander; Johannes M. Heuckmann; Roland T. Ullrich; Roopika Menon; Sebastian Maier; Alex Soltermann; Holger Moch; Patrick Wagener; Florian Fischer; Stefanie Heynck; Mirjam Koker; Jakob Schöttle; Frauke Leenders; Franziska Gabler; Ines Dabow; Silvia Querings; Lukas C. Heukamp; Hyatt Balke-Want; Sascha Ansén; Daniel Rauh; Ingelore Baessmann; Janine Altmüller; Zoe Wainer; Matthew Conron; Gavin Wright; Prudence A. Russell

FGFR1 amplification provides a therapeutic target for squamous cell lung cancer, which is resistant to other targeted lung cancer drugs. A Smoking Gun for Lung Cancer Detectives and scientists alike need strong evidence to take their cases to the judge, who for scientists is often a patient with a deadly disease. Yet, new culprits are sometimes found that can break a case wide open. Lung cancer, which accounts for more than 10% of the global cancer burden, has a poor prognosis and inadequately responds to chemotherapy and radiotherapy. New targeted treatments for lung adenocarcinomas inhibit the oncogenic versions of signaling protein kinases that arise from mutations typically found in lung cancer patients who have never smoked. However, smokers frequently suffer from a different deviant, squamous cell lung cancers, for which there are no known molecular genetic targets for therapy. Now, Weiss et al. have fingered a new suspect in smoking-related lung cancer: amplification of the FGFR1 gene, which encodes the fibroblast growth factor receptor 1 tyrosine kinase (FGFR1). To identify therapeutically viable genetic alterations that may influence squamous cell lung cancer, Weiss et al. performed genomic profiles on a large set of lung cancer specimens. Squamous cell lung cancer samples showed FGFR1 amplification, which was not found in other lung cancer subtypes. The authors then determined that a molecule that broadly inhibits FGF receptor function could block tumor growth and cause cell death in the cancers that expressed high amounts of the FGFR1 gene product in a manner that was dependent on FGFR1 expression. Moreover, FGFR1 inhibition resulted in a considerable decrease in tumor size in a mouse model of FGFR1-amplified lung cancer. This culmination of evidence implies that inhibition of this receptor tyrosine kinase should be explored as a candidate therapy for corralling squamous cell lung cancer in smokers. Lung cancer remains one of the leading causes of cancer-related death in developed countries. Although lung adenocarcinomas with EGFR mutations or EML4-ALK fusions respond to treatment by epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) inhibition, respectively, squamous cell lung cancer currently lacks therapeutically exploitable genetic alterations. We conducted a systematic search in a set of 232 lung cancer specimens for genetic alterations that were therapeutically amenable and then performed high-resolution gene copy number analyses. We identified frequent and focal fibroblast growth factor receptor 1 (FGFR1) amplification in squamous cell lung cancer (n = 155), but not in other lung cancer subtypes, and, by fluorescence in situ hybridization, confirmed the presence of FGFR1 amplifications in an independent cohort of squamous cell lung cancer samples (22% of cases). Using cell-based screening with the FGFR inhibitor PD173074 in a large (n = 83) panel of lung cancer cell lines, we demonstrated that this compound inhibited growth and induced apoptosis specifically in those lung cancer cells carrying amplified FGFR1. We validated the FGFR1 dependence of FGFR1-amplified cell lines by FGFR1 knockdown and by ectopic expression of an FGFR1-resistant allele (FGFR1V561M), which rescued FGFR1-amplified cells from PD173074-mediated cytotoxicity. Finally, we showed that inhibition of FGFR1 with a small molecule led to significant tumor shrinkage in vivo. Thus, focal FGFR1 amplification is common in squamous cell lung cancer and associated with tumor growth and survival, suggesting that FGFR inhibitors may be a viable therapeutic option in this cohort of patients.


Nature Genetics | 2012

Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

Martin Peifer; Lynnette Fernandez-Cuesta; Martin L. Sos; Julie George; Danila Seidel; Lawryn H. Kasper; Dennis Plenker; Frauke Leenders; Ruping Sun; Thomas Zander; Roopika Menon; Mirjam Koker; Ilona Dahmen; Christian Müller; Vincenzo Di Cerbo; Hans Ulrich Schildhaus; Janine Altmüller; Ingelore Baessmann; Christian Becker; Bram De Wilde; Jo Vandesompele; Diana Böhm; Sascha Ansén; Franziska Gabler; Ines Wilkening; Stefanie Heynck; Johannes M. Heuckmann; Xin Lu; Scott L. Carter; Kristian Cibulskis

Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 ± 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases, we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in the CREBBP, EP300 and MLL genes that encode histone modifiers. Furthermore, we observed mutations in PTEN, SLIT2 and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from Tp53 and Rb1 double knockout mice. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genomic alterations and provides a generalizable framework for the identification of biologically relevant genes in the context of high mutational background.


Cancer Discovery | 2011

Mutations in the DDR2 Kinase Gene Identify a Novel Therapeutic Target in Squamous Cell Lung Cancer

Peter S. Hammerman; Martin L. Sos; Alex H. Ramos; Chunxiao Xu; Amit Dutt; Wenjun Zhou; Lear E. Brace; Brittany A. Woods; Wenchu Lin; Jianming Zhang; Xianming Deng; Sang Min Lim; Stefanie Heynck; Martin Peifer; Jeffrey R. Simard; Michael S. Lawrence; Robert C. Onofrio; Helga B. Salvesen; Danila Seidel; Thomas Zander; Johannes M. Heuckmann; Alex Soltermann; Holger Moch; Mirjam Koker; Frauke Leenders; Franziska Gabler; Silvia Querings; Sascha Ansén; Elisabeth Brambilla; Christian Brambilla

UNLABELLED While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. SIGNIFICANCE DDR2 mutations are present in 4% of lung SCCs, and DDR2 mutations are associated with sensitivity to dasatinib. These findings provide a rationale for designing clinical trials with the FDA-approved drug dasatinib in patients with lung SCCs.


Journal of the National Cancer Institute | 2010

Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium

Thérèse Truong; Rayjean J. Hung; Christopher I. Amos; Xifeng Wu; Heike Bickeböller; Albert Rosenberger; Wiebke Sauter; Thomas Illig; H.-Erich Wichmann; Angela Risch; Hendrik Dienemann; Rudolph Kaaks; Ping Yang; Ruoxiang Jiang; John K. Wiencke; Margaret Wrensch; Helen M. Hansen; Karl T. Kelsey; Keitaro Matsuo; Kazuo Tajima; Ann G. Schwartz; Angie S. Wenzlaff; Adeline Seow; Chen Ying; Andrea Staratschek-Jox; Peter Nürnberg; Erich Stoelben; Jürgen Wolf; Philip Lazarus; Joshua E. Muscat

BACKGROUND Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies. METHODS Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case-control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided. RESULTS Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, P(trend) = 2 x 10(-26)), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, P(trend) = 1 x 10(-10)) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, P(trend) = 5 x 10(-8)) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, P(trend) = 2 x 10(-5); rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, P(trend) = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was observed in both ethnic groups. Neither of the two variants on chromosome 6p21 was associated with the risk of lung cancer. CONCLUSIONS In this international genetic association study of lung cancer, previous associations found in white populations were replicated and new associations were identified in Asian populations. Future genetic studies of lung cancer should include detailed stratification by histology.


Pneumologie | 2011

[Prevention, diagnosis, therapy, and follow-up of lung cancer].

G. Goeckenjan; H. Sitter; M. Thomas; D. Branscheid; M. Flentje; F. Griesinger; N. Niederle; M. Stuschke; T. Blum; K.-M. Deppermann; Joachim H. Ficker; L. Freitag; A. S. Lübbe; T. Reinhold; E. Späth-Schwalbe; Dieter Ukena; M. Wickert; M. Wolf; Stefan Andreas; T. Auberger; R. P. Baum; B. Baysal; J. Beuth; Heike Bickeböller; A. Böcking; R. M. Bohle; I. Brüske; O. Burghuber; N. Dickgreber; S. Diederich

Authors G. Goeckenjan1, H. Sitter2, M. Thomas3, D. Branscheid4, M. Flentje5, F. Griesinger6, N. Niederle7, M. Stuschke8, T. Blum9, K.-M. Deppermann10, J. H. Ficker11, L. Freitag12, A. S. Lübbe13, T. Reinhold14, E. Späth-Schwalbe15, D. Ukena16, M. Wickert17, M. Wolf18, S. Andreas19, T. Auberger20, R. P. Baum21, B. Baysal22, J. Beuth23, H. Bickeböller24, A. Böcking25, R. M. Bohle26, I. Brüske27, O. Burghuber28, N. Dickgreber29, S. Diederich30, H. Dienemann31, W. Eberhardt32, S. Eggeling33, T. Fink34, B. Fischer35, M. Franke36, G. Friedel37, T. Gauler38, S. Gütz39, H. Hautmann40, A. Hellmann41, D. Hellwig42, F. Herth43, C. P. Heußel44, W. Hilbe45, F. Hoffmeyer46, M. Horneber47, R. M. Huber48, J. Hübner49, H.-U. Kauczor50, K. Kirchbacher51, D. Kirsten52, T. Kraus53, S. M. Lang54, U. Martens55, A. Mohn-Staudner56, K.-M. Müller57, J. Müller-Nordhorn58, D. Nowak59, U. Ochmann59, B. Passlick60, I. Petersen61, R. Pirker62, B. Pokrajac63, M. Reck64, S. Riha65, C. Rübe66, A. Schmittel67, N. Schönfeld68, W. Schütte69, M. Serke70, G. Stamatis71, M. Steingräber72, M. Steins73, E. Stoelben74, L. Swoboda75, H. Teschler76, H. W.Tessen77, M. Weber78, A. Werner79, H.-E. Wichmann80, E. Irlinger Wimmer81, C. Witt82, H. Worth83


PLOS ONE | 2011

Benchmarking of Mutation Diagnostics in Clinical Lung Cancer Specimens

Silvia Querings; Janine Altmüller; Sascha Ansén; Thomas Zander; Danila Seidel; Franziska Gabler; Martin Peifer; Eva Markert; Kathryn Stemshorn; Bernd Timmermann; Beate Saal; Stefan M. Klose; Karen Ernestus; Matthias Scheffler; Walburga Engel-Riedel; Erich Stoelben; Elisabeth Brambilla; Juergen Wolf; Peter Nürnberg; Roman K. Thomas

Treatment of EGFR-mutant non-small cell lung cancer patients with the tyrosine kinase inhibitors erlotinib or gefitinib results in high response rates and prolonged progression-free survival. Despite the development of sensitive mutation detection approaches, a thorough validation of these in a clinical setting has so far been lacking. We performed, in a clinical setting, a systematic validation of dideoxy ‘Sanger’ sequencing and pyrosequencing against massively parallel sequencing as one of the most sensitive mutation detection technologies available. Mutational annotation of clinical lung tumor samples revealed that of all patients with a confirmed response to EGFR inhibition, only massively parallel sequencing detected all relevant mutations. By contrast, dideoxy sequencing missed four responders and pyrosequencing missed two responders, indicating a dramatic lack of sensitivity of dideoxy sequencing, which is widely applied for this purpose. Furthermore, precise quantification of mutant alleles revealed a low correlation (r2 = 0.27) of histopathological estimates of tumor content and frequency of mutant alleles, thereby questioning the use of histopathology for stratification of specimens for individual analytical procedures. Our results suggest that enhanced analytical sensitivity is critically required to correctly identify patients responding to EGFR inhibition. More broadly, our results emphasize the need for thorough evaluation of all mutation detection approaches against massively parallel sequencing as a prerequisite for any clinical implementation.


Clinical Cancer Research | 2011

Blood-Based Gene Expression Signatures in Non–Small Cell Lung Cancer

Thomas Zander; Andrea Hofmann; Andrea Staratschek-Jox; Sabine Classen; Svenja Debey-Pascher; Daniela Maisel; Sascha Ansén; Moritz Hahn; Marc Beyer; Roman K. Thomas; Birgit S. Gathof; Cornelia Mauch; Karl-Stefan Delank; Walburga Engel-Riedel; H.-Erich Wichmann; Erich Stoelben; Joachim L. Schultze; Juergen Wolf

Purpose: Blood-based surrogate markers would be attractive biomarkers for early detection, diagnosis, prognosis, and prediction of therapeutic outcome in cancer. Disease-associated gene expression signatures in peripheral blood mononuclear cells (PBMC) have been described for several cancer types. However, RNA-stabilized whole blood–based technologies would be clinically more applicable and robust. We evaluated the applicability of whole blood–based gene expression profiling for the detection of non–small cell lung cancer (NSCLC). Experimental Design: Expression profiles were generated from PAXgene-stabilized blood samples from three independent groups consisting of NSCLC cases and controls (n = 77, 54, and 102), using the Illumina WG6-VS2 system. Results: Several genes are consistently differentially expressed in whole blood of NSCLC patients and controls. These expression profiles were used to build a diagnostic classifier for NSCLC, which was validated in an independent validation set of NSCLC patients (stages I–IV) and hospital-based controls. The area under the receiver operator curve was calculated to be 0.824 (P < 0.001). In a further independent dataset of stage I NSCLC patients and healthy controls the AUC was 0.977 (P < 0.001). Specificity of the classifier was validated by permutation analysis in both validation cohorts. Genes within the classifier are enriched in immune-associated genes and show specificity for NSCLC. Conclusions: Our results show that gene expression profiles of whole blood allow for detection of manifest NSCLC. These results prompt further development of gene expression–based biomarker tests in peripheral blood for the diagnosis and early detection of NSCLC. Clin Cancer Res; 17(10); 3360–7. ©2011 AACR.


Journal of Pharmacology and Experimental Therapeutics | 2010

Resveratrol Impairs the Release of Steroid-Resistant Inflammatory Cytokines from Human Airway Smooth Muscle Cells in Chronic Obstructive Pulmonary Disease

Juergen Knobloch; Bernhard Sibbing; David Jungck; Yingfeng Lin; Katja Urban; Erich Stoelben; Justus Strauch; Andrea Koch

Chronic obstructive pulmonary disease (COPD) therapy is complicated by corticosteroid resistance of the interleukin 8 (IL-8)-dependent and granulocyte macrophage-colony stimulating factor (GM-CSF)-dependent chronic airway inflammation, for whose establishment human airway smooth muscle cells (HASMCs) might be crucial. It is unclear whether the release of inflammatory mediators from HASMCs is modulated by cigarette smoking and is refractory to corticosteroids in COPD. Resveratrol, an antiaging drug with protective effects against lung cancer, might be an alternative to corticosteroids in COPD therapy. Vascular endothelial growth factor (VEGF) might offer protection from developing emphysema. We tested the following hypotheses for HASMCs: 1) smoking with or without airway obstruction modulates IL-8, GM-CSF, and VEGF release; and 2) corticosteroids, but not resveratrol, fail to inhibit cytokine release in COPD. Cytokine release from HASMCs exposed to tumor necrosis factor α (TNFα), dexamethasone, and/or resveratrol was measured via enzyme-linked immunosorbent assay and compared between nonsmokers (NS), smokers without COPD (S), and smokers with COPD (all n = 10). In response to TNFα, IL-8 release was increased, but GM-CSF and VEGF release was decreased in S and COPD compared with NS. Dexamethasone and resveratrol inhibited concentration-dependently TNFα-induced IL-8, GM-CSF, and VEGF release. For IL-8 and GM-CSF efficiency of dexamethasone was NS > S > COPD. That of resveratrol was NS = S = COPD for IL-8 and NS = S < COPD for GM-CSF. For VEGF the efficiency of dexamethasone was NS = S = COPD, and that of resveratrol was NS = S > COPD. All resveratrol effects were partially based on p38 mitogen-activated protein kinase blockade. In conclusion, smoking modulates cytokine release from HASMCs. Corticosteroid refractoriness of HASMCs in COPD is cytokine-dependent. Resveratrol might be superior to corticosteroids in COPD therapy, because it more efficiently reduces the release of inflammatory mediators and has limited effects on VEGF in COPD.


Basic & Clinical Pharmacology & Toxicology | 2014

Resveratrol Attenuates the Release of Inflammatory Cytokines from Human Bronchial Smooth Muscle Cells Exposed to Lipoteichoic Acid in Chronic Obstructive Pulmonary Disease

Jürgen Knobloch; Chiara Wahl; Maria Feldmann; David Jungck; Justus Strauch; Erich Stoelben; Andrea Koch

During bacterial infections, pathogen‐associated molecular patterns (PAMPs) induce cytokine/chemokine release in immunoactive cells. This increases corticosteroid‐resistant airway inflammation in chronic obstructive pulmonary disease (COPD) and leads to exacerbations. Anti‐inflammatory therapies other than corticosteroids are required and resveratrol is currently under discussion. Resveratrol is an activator of sirtuins, which are class III histone deacetylases (HDACs). We suggested that human airway smooth muscle cells (HASMCs) release COPD‐associated cytokines/chemokines in response to lipoteichoic acid (LTA), a major PAMP of gram‐positive bacteria and that resveratrol is superior to the corticosteroid dexamethasone in suppressing these cytokines/chemokines. Cultivated HASMCs of patients with COPD were pre‐incubated with resveratrol or dexamethasone before stimulation with LTA. CCL2, GM‐CSF, IL‐6 and IL‐8 were analysed in culture supernatants by enzyme‐linked immunosorbent assay. Drug effects were investigated in the absence and presence of trichostatin A (TSA), an inhibitor of class I/II HDACs, and EX527, an inhibitor of the sirtuin SIRT1. LTA induced robust cytokine/chemokine release. Resveratrol was superior to dexamethasone in reducing CCL‐2, IL‐6 and IL‐8 in LTA‐exposed HASMCs of patients with COPD. Both drugs were equally effective in reducing GM‐CSF. Resveratrol effects were partially reversed by EX527 but not by TSA. Dexamethasone effects were partially reversed by TSA but not by EX527. We conclude that HASMCs contribute to the increase in airway inflammation in COPD exacerbations caused by gram‐positive bacterial infections. Our data suggest resveratrol as an alternative anti‐inflammatory therapy in infection‐induced COPD exacerbations. Resveratrol and corticosteroids suppress cytokine/chemokine expression through activation of SIRT1 or interaction with class I/II HDACs, respectively, in HASMCs.

Collaboration


Dive into the Erich Stoelben's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge