Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erich V. Scheller is active.

Publication


Featured researches published by Erich V. Scheller.


Journal of Immunology | 2011

Influenza A Inhibits Th17-Mediated Host Defense against Bacterial Pneumonia in Mice

Anupa Kudva; Erich V. Scheller; Keven M. Robinson; Christopher Crowe; Sun Mi Choi; Samantha Slight; Shabaana A. Khader; Patricia J. Dubin; Richard I. Enelow; Jay K. Kolls; John F. Alcorn

Staphylococcus aureus is a significant cause of hospital and community acquired pneumonia and causes secondary infection after influenza A. Recently, patients with hyper-IgE syndrome, who often present with S. aureus infections of the lung and skin, were found to have mutations in STAT3, required for Th17 immunity, suggesting a potential critical role for Th17 cells in S. aureus pneumonia. Indeed, IL-17R−/− and IL-22−/− mice displayed impaired bacterial clearance of S. aureus compared with that of wild-type mice. Mice challenged with influenza A PR/8/34 H1N1 and subsequently with S. aureus had increased inflammation and decreased clearance of both virus and bacteria. Coinfection resulted in greater type I and II IFN production in the lung compared with that with virus infection alone. Importantly, influenza A coinfection resulted in substantially decreased IL-17, IL-22, and IL-23 production after S. aureus infection. The decrease in S. aureus-induced IL-17, IL-22, and IL-23 was independent of type II IFN but required type I IFN production in influenza A-infected mice. Furthermore, overexpression of IL-23 in influenza A, S. aureus-coinfected mice rescued the induction of IL-17 and IL-22 and markedly improved bacterial clearance. These data indicate a novel mechanism by which influenza A-induced type I IFNs inhibit Th17 immunity and increase susceptibility to secondary bacterial pneumonia.


American Journal of Pathology | 2013

IL-22 Is Essential for Lung Epithelial Repair following Influenza Infection

Derek A. Pociask; Erich V. Scheller; Sivanarayana Mandalapu; Kevin J. McHugh; Richard I. Enelow; Cheryl L. Fattman; Jay K. Kolls; John F. Alcorn

Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22(-/-) mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22(-/-) mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22(-/-) animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease.


The Journal of Infectious Diseases | 2014

Influenza A Virus Exacerbates Staphylococcus aureus Pneumonia in Mice by Attenuating Antimicrobial Peptide Production

Keven M. Robinson; Kevin J. McHugh; Sivanarayana Mandalapu; Michelle E. Clay; Benjamin Lee; Erich V. Scheller; Richard I. Enelow; Yvonne R. Chan; Jay K. Kolls; John F. Alcorn

Influenza A represents a significant cause of morbidity and mortality worldwide. Bacterial complications of influenza A confer the greatest risk to patients. TH17 pathway inhibition has been implicated as a mechanism by which influenza A alters bacterial host defense. Here we show that preceding influenza causes persistent Staphylococcus aureus infection and suppression of TH17 pathway activation in mice. Influenza does not inhibit S. aureus binding and uptake by phagocytic cells but instead attenuates S. aureus induced TH17 related antimicrobial peptides necessary for bacterial clearance in the lung. Importantly, exogenous lipocalin 2 rescued viral exacerbation of S. aureus infection and decreased free iron levels in the bronchoalveolar lavage from mice coinfected with S. aureus and influenza. These findings indicate a novel mechanism by which influenza A inhibits TH17 immunity and increases susceptibility to secondary bacterial pneumonia. Identification of new mechanisms in the pathogenesis of bacterial pneumonia could lead to future therapeutic targets.


Mucosal Immunology | 2014

The complex relationship between inflammation and lung function in severe asthma

Michelle L. Manni; John B. Trudeau; Erich V. Scheller; Sivanarayana Mandalapu; M. Merle Elloso; Jay K. Kolls; Sally E. Wenzel; John F. Alcorn

Asthma is a common respiratory disease affecting ∼300 million people worldwide. Airway inflammation is thought to contribute to asthma pathogenesis, but the direct relationship between inflammation and airway hyperresponsiveness (AHR) remains unclear. This study investigates the role of inflammation in a steroid-insensitive, severe allergic airway disease model and in severe asthmatics stratified by inflammatory profile. First, we used the T-helper (TH)-17 cells adoptive transfer mouse model of asthma to induce pulmonary inflammation, which was lessened by tumor necrosis factor (TNF)-α neutralization or neutrophil depletion. Although decreased airspace inflammation following TNFα neutralization and neutrophil depletion rescued lung compliance, neither intervention improved AHR to methacholine, and tissue inflammation remained elevated when compared with control. Further, sputum samples were collected and analyzed from 41 severe asthmatics. In severe asthmatics with elevated levels of sputum neutrophils, but low levels of eosinophils, increased inflammatory markers did not correlate with worsened lung function. This subset of asthmatics also had significantly higher levels of TH17-related cytokines in their sputum compared with severe asthmatics with other inflammatory phenotypes. Overall, this work suggests that lung compliance may be linked with cellular inflammation in the airspace, whereas T-cell-driven AHR may be associated with tissue inflammation and other pulmonary factors.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice

Benjamin Lee; Keven M. Robinson; Kevin J. McHugh; Erich V. Scheller; Sivanarayana Mandalapu; Chen Chen; Y. Peter Di; Michelle E. Clay; X Richard I. Enelow; Patricia J. Dubin; John F. Alcorn

Suppression of type 17 immunity by type I interferon (IFN) during influenza A infection has been shown to enhance susceptibility to secondary bacterial pneumonia. Although this mechanism has been described in coinfection with gram-positive bacteria, it is unclear whether similar mechanisms may impair lung defense against gram-negative infections. Furthermore, precise delineation of the duration of type I IFN-associated susceptibility to bacterial infection remains underexplored. Therefore, we investigated the effects of preceding influenza A virus infection on subsequent challenge with the gram-negative bacteria Escherichia coli or Pseudomonas aeruginosa and the temporal association between IFN expression with susceptibility to Staphylococcus aureus challenge in a mouse model of influenza and bacterial coinfection. Here we demonstrate that preceding influenza A virus led to increased lung E. coli and P. aeruginosa bacterial burden, which was associated with suppression of type 17 immunity and attenuation of antimicrobial peptide expression. Enhanced susceptibility to S. aureus coinfection ceased at day 14 of influenza infection, when influenza-associated type I IFN levels had returned to baseline levels, further suggesting a key role for type I IFN in coinfection pathogenesis. These findings further implicate type I IFN-associated suppression of type 17 immunity and antimicrobial peptide production as a conserved mechanism for enhanced susceptibility to both gram-positive and gram-negative bacterial coinfection during influenza infection.


PLOS ONE | 2012

Differential requirement for c-Jun N-terminal kinase 1 in lung inflammation and host defense.

Jos van der Velden; Yvonne M. W. Janssen-Heininger; Sivanarayna Mandalapu; Erich V. Scheller; Jay K. Kolls; John F. Alcorn

The c-Jun N-terminal kinase (JNK) - 1 pathway has been implicated in the cellular response to stress in many tissues and models. JNK1 is known to play a role in a variety of signaling cascades, including those involved in lung disease pathogenesis. Recently, a role for JNK1 signaling in immune cell function has emerged. The goal of the present study was to determine the role of JNK1 in host defense against both bacterial and viral pneumonia, as well as the impact of JNK1 signaling on IL-17 mediated immunity. Wild type (WT) and JNK1 −/− mice were challenged with Escherichia coli, Staphylococcus aureus, or Influenza A. In addition, WT and JNK1 −/− mice and epithelial cells were stimulated with IL-17A. The impact of JNK1 deletion on pathogen clearance, inflammation, and histopathology was assessed. JNK1 was required for clearance of E. coli, inflammatory cell recruitment, and cytokine production. Interestingly, JNK1 deletion had only a small impact on the host response to S. aureus. JNK1 −/− mice had decreased Influenza A burden in viral pneumonia, yet displayed worsened morbidity. Finally, JNK1 was required for IL-17A mediated induction of inflammatory cytokines and antimicrobial peptides both in epithelial cells and the lung. These data identify JNK1 as an important signaling molecule in host defense and demonstrate a pathogen specific role in disease. Manipulation of the JNK1 pathway may represent a novel therapeutic target in pneumonia.


Journal of Allergy and Therapy | 2012

Airway Hyperresponsiveness and Inflammation: Causation, Correlation, or No Relation?

Yvonne Mw Janssen-Heininger; Charles G. Irvin; Erich V. Scheller; Amy L. Brown; Jay K. Kolls; John F. Alcorn

Asthma represents a growing problem in the developing world, affecting millions of children and adults. Features of the disease are reversible airflow obstruction, airway hyperresponsiveness and airway inflammation leading to tissue damage and remodeling. Many studies have attempted to address whether inflammation and airway hyperresponsiveness are mechanistically linked. In this study, data are presented from several mouse models that illustrate that a clear link between these features of asthma remains elusive. The impact of altering inflammatory signaling (NF-κB or JNK1) on inflammation and airway hyperresponsiveness was examined. In addition, the effect of antigen sensitization and the route of antigen delivery were investigated. The data herein show that in many cases, inflammation and airway hyperresponsiveness do not directly correlate. In conclusion, the need for mechanistic studies in mouse models is highlighted to address the interplay between these components thought to be critical to asthma pathogenesis.


Respiratory Research | 2015

The role of IL-27 in susceptibility to post-influenza Staphylococcus aureus pneumonia

Keven M. Robinson; Benjamin Lee; Erich V. Scheller; Sivanarayana Mandalapu; Richard I. Enelow; Jay K. Kolls; John F. Alcorn


american thoracic society international conference | 2010

Influenza A Inhibits TH17-mediated Immunity Which Is Required For Host Defense Against Staphylococcus Aureus Pneumonia

John F. Alcorn; Anupa Kudva; Christopher Crowe; Erich V. Scheller; Jay K. Kolls


Journal of Immunology | 2014

The role of interleukin-27 in influenza A and Staphylococcus aureus co-infection (INC8P.435)

Keven Robinson; Benjamin Lee; Sivanarayana Mandalapu; Erich V. Scheller; Jay K. Kolls; John F. Alcorn

Collaboration


Dive into the Erich V. Scheller's collaboration.

Top Co-Authors

Avatar

John F. Alcorn

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Lee

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anupa Kudva

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge