Erick Dousset
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erick Dousset.
Free Radical Research | 2002
Erick Dousset; Jean Guillaume Steinberg; Marion Faucher; Yves Jammes
In healthy humans sustaining static handgrip at 60% of maximal voluntary contraction (MVC) until exhaustion, we measured the venous blood concentration of reduced ascorbic acid (RAA) and thiobarbituric acid reactive substances (TBARS), respectively, used as markers of the post-exercise oxidative stress and lipid peroxidation. Measurements were conducted in normoxemia, then during a 30-min period of hypoxemia (PaO 2 =56 mmHg) produced by inhalation of an hypoxic gas mixture. Compared to normoxemia, hypoxemia did not significantly modify the resting concentrations of TBARS and RAA, and did not affect the consumption of ascorbic acid after 60% MVC but suppressed the post-exercise TBARS increase. We conclude that acute hypoxemia does not modify the production of oxygen free radicals after strenuous static efforts and even seems to attenuate the lipid peroxidation.
Neuroscience | 2002
Tanguy Marqueste; Patrick Decherchi; Erick Dousset; F Berthelin; Yves Jammes
Numerous previous studies were devoted to the regeneration of motoneurons toward a denervated muscle after nerve repair by self-anastomosis but, to date, few investigations have evaluated the regeneration of sensory muscle endings. In a previous electrophysiological study (Decherchi et al., 2001) we showed that the functional characteristics of tibialis anterior muscle afferents are affected after self-anastomosis of the peroneal nerve even when the neuromuscular preparation was not chronically stimulated. The present study examines the regeneration of groups I-II (mechanosensitive) and groups III-IV (metabosensitive) muscle afferents by evaluating the recovery of their response to different test agents after self-anastomosis combined or not with chronic muscle stimulation for a 10-weeks period. We compared five groups of rats: C, control; L, nerve lesion without suture; LS, nerve lesion with suture; LSE(m): nerve lesion plus chronic muscle stimulation with a monophasic rectangular current; and LSE(b): nerve lesion plus chronic stimulation with a biphasic current with modulations of pulse duration and frequency, eliciting a pattern of activity resembling that delivered by the nerve to the muscle. Compared to the control group, (1) muscle kept only its original weight in the LSE(b) group, (2) in the LS group the response curve to tendon vibration was shifted toward the highest mechanical frequencies and the response of groups III-IV afferents after fatiguing muscle stimulation lowered, (3) in the LSE(m) group, the pattern of activation of mechanoreceptors by tendon vibrations was altered as in the LS group, and the response of metabosensitive afferents to KCl injections was markedly reduced, (4) in the LSE(b) group, the response to tendon vibration was not modified and the activation of metabosensitive units by increased extracellular potassium chloride concentration was conserved. Both LSE(b) and LSE(m) conditions were ineffective to maintain the post muscle stimulation activation of metabosensitive units as well as their activation by injected lactic acid solutions. Our data indicate that chronic muscle electrostimulation partially favors the recovery of mechano- and metabosensitivity in a denervated muscle and that biphasic modulated currents seem to provide better results.
Revue Neurologique | 2005
Christophe Desouches; Olivier Alluin; N. Mutaftschiev; Erick Dousset; Guy Magalon; José Boucraut; Francois Feron; Patrick Decherchi
INTRODUCTION: Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART: Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION: This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.
Experimental Brain Research | 2007
Patrick Decherchi; Erick Dousset; Yves Jammes
The muscle metaboreflex is thought to be one of the neural mechanisms involved in the cardiovascular and respiratory adjustments to muscular activity. The afferent arm of the reflex is composed of thinly myelinated group III and unmyelinated group IV sensitive fibers. Such reflex arc had been extensively described in cats, dogs, rabbits and humans. However, results obtained in rats are controversial and the role of the afferent fibers from the tibialis anterior skeletal muscle has never been shown. The purpose of the present experiments was to study the responses of both respiratory and cardiovascular systems following activation of the metabosensitive fibers originating from tibialis anterior muscle in non decerebrated and non vagotomized barbituric anesthetized adult rats. Mean arterial blood pressure, mean arterial blood flow, heart rate and phrenic nerve activity (frequency and amplitude) were monitored during electrically induced fatigue or after intramuscular injection of potassium chloride or lactic acid (specific stimuli of the group III and IV afferent fibers). The experiments were performed under normal condition, then after regional circulatory occlusion, which isolated and maintained the neural drive and abolished humoral communication and after section of the peroneal nerve innervating the tibialis anterior muscle. We showed that cardiorespiratory parameters were increased significantly in response to stimuli under normal conditions and after venous outflow occlusion excluding any participation of central chemoception. No change was observed after nerve section. Our data indicate that changes occurring in rat hindlimb muscle such as the tibialis anterior are sufficient to regulate the cardiorespiratory function via metabosensitive fiber activation.
Journal of Neuroscience Research | 2004
Erick Dousset; Tanguy Marqueste; Patrick Decherchi; Yves Jammes; Laurent Grélot
To investigate the role played by muscle afferents in the sensorimotor loops, we measured the effects of capsaicin injection in newborns on the mechano‐ and metabosensitive discharges and the running performance at adulthood. Female Sprague Dawley rats received a subcutaneous injection of either 50 mg/kg capsaicin or solvent (10% ethanol, 10% Tween 80 in 0.9% saline) during their second day of life. These two groups were compared with a control, untreated group. Four months later, treadmill running performance and muscle afferent (mechanosensitive and metabosensitive) activities from the tibialis anterior muscle were measured. The capsaicin‐treated group demonstrated a reduced maximal exercise capacity (time to exhaustion) and a reduced response of muscle metabosensitive fibers (group III and IV nerve endings) to the examined stimuli (arterial KCl and lactic acid injections, electrically induced fatigue) compared with the sham‐injected solvent and control groups. Group IV afferent responses were absent in the compound nerve action potentials evoked by peripheral nerve stimulation. The response to mechanosensitive fibers to tendon vibration was also affected in the capsaicin group compared with the control and sham‐injected groups, which presented a bimodal response corresponding to the activation of muscle spindles and Golgi tendon organs. Finally, measurements of the force developed by the tibialis anterior muscle from the beginning to the end of a 3‐min muscle stimulation revealed a more significant fall in the capsaicin group compared with the others. The present experiments reveal that the pharmacological alteration of muscular metabosensitive afferent resulted in drastic changes in the neuromuscular sensory encoding and in the central neural network that could accelerate failure of the task during fatigue.
Journal of Electromyography and Kinesiology | 2003
Erick Dousset; Yves Jammes
Recording a superimposed electrically-induced contraction at the limit of endurance during voluntary contraction is used as an indicator of failure of muscle activation by the central nervous system and discards the existence of peripheral muscle fatigue. We questioned on the reliability of this method by using other means to explore peripheral muscle failure. Fifteen normal subjects sustained handgrip at 60% of maximal voluntary contraction (MVC) until exhaustion. During sustained contraction, the power spectrum analysis of the flexor digitorum surface electromyogram allowed us to calculate the leftward shift of median frequency (MF). A superimposed 60 Hz 3 s pulse train (burst superimposition) was delivered to the muscle when force levelled off close to the preset value. Immediately after the fatigue trial had ended, the subject was asked to perform a 5 s 60% MVC and we measured the peak contractile response to a 60 Hz 3 s burst stimulation. Recordings of the compound evoked muscle action potential (M-wave) allowed us to explore an impairment of neuromuscular propagation. A superimposed contraction was measured in 7 subjects in their two forearms, whereas it was absent in the 8 others. Despite these discrepancies, all subjects were able to reproduce a 3 s 60% MVC immediately after the fatigue trial ended and there was no post-fatigue decrease of contraction elicited by the 60 Hz 3 s burst stimulation, as well as no M-wave decrease in amplitude and conduction time. Thus, there was no indication of peripheral muscle fatigue. MF decrease was present in all individuals throughout the fatiguing contraction and it was not correlated with the magnitude of superimposed force. These observations indicate that an absence of superimposed electrically-induced muscle contraction does not allow us to conclude the existence of a sole peripheral muscle fatigue in these circumstances.
Muscle & Nerve | 2009
Vincent Martin; Erick Dousset; Jérôme Laurin; Julien Gondin; Maxime Gautier; Patrick Decherchi
The purpose of this study was to test the hypothesis that group III and IV muscle afferent activity would differ after concentric‐ and eccentric‐type fatiguing tasks. Tibialis anterior afferent activities from adult rats were measured in three conditions: before and after a rest period (C), and after concentric (CC) or eccentric (EC) exercise. Specific activators were used to elicit increases in afferent discharge rates, i.e., electrically induced fatigue (EIF), or potassium chloride (KCl) and lactic acid (LA) injections. After the rest period (POST‐condition), the control group displayed a pattern of response to stimuli similar to that obtained in baseline condition (PRE‐condition). However, responses were significantly different in the exercise groups: afferent responses were blunted in the CC group and were almost suppressed in the EC group. These results demonstrate that the type of muscular contraction involved in the fatiguing task can affect group III and IV afferent fiber activity differently and, potentially, can differentially affect the regulation of central motor command. Muscle Nerve, 2009
Neuroscience | 2015
Jérôme Laurin; Vincent Pertici; Erick Dousset; Tanguy Marqueste; Patrick Decherchi
The present review is focused on neural mechanisms responsible of group III and IV muscle afferent actions on central motor drive during physical exercise in both healthy and pathological populations. It seems that these mechanisms contribute to improve muscle performance by regulating the peripheral fatigue development and by avoiding excessive muscle impairments. Therefore, a great deal of attention is paid to their influences on motor unit activation during fatiguing exercise both in human and animal models. Recent evidence indicated that these afferents from a given active muscle could contribute to regulate the motor activity of the homonymous as well as surrounding skeletal muscles by acting at both spinal and supraspinal levels. In addition, given that the recovery of the sensory feedback plays a key role in the improvement of motor function following numerous neuromuscular traumas, the role of these afferents in preclinical and clinical situations is also explored in animal and human models. It is supposed that studying the motor and autonomic functions of group III and IV afferents might help healthcare professionals in the future to find appropriate treatments and rehabilitation programs.
Journal of Applied Physiology | 2009
Jérôme Laurin; Erick Dousset; Serge Mesure; Patrick Decherchi
The medial collateral ligament (MCL) is one of the most injured ligaments during sport activities. The resulting joint damage effects on neuromuscular system remain unclear. Thus this study was designed to assess the changes in neuromuscular properties of vastus medialis muscle after MCL transection. Complete rupture of MCL was performed on rats, and dynamic functional assessment during locomotion was achieved before and once a week from 1-5 wk postlesion. Twitch properties and metabo- and mechanosensitive afferent fiber responses to specific stimuli were measured 1, 3, and 5 wk after MCL transection. Results indicated that maximum knee angle measured during the stance phase of the gait cycle was decreased during 3 wk after MCL injury and then recovered. Minimum knee angle measured during the stance phase was decreased during 2 wk and showed compensatory effects at week 5. A stepwise decrease in maximum relaxation rate-to-amplitude ratio concomitant with a stepwise increase in half-relaxation time were observed following MCL injury. Variations in metabosensitive afferent response to chemical (KCl and lactic acid) injections were decreased at week 1 and recovered progressively from week 3 to week 5 postlesion. Recovery of the mechanosensitive afferent response to vibrations was not totally complete after 5 wk. Our data indicate that alteration of the sensory pathways from the vastus medialis muscle could be considered as a source of neuromuscular deficits following MCL transection. Our results should be helpful in clinical purpose to improve the knowledge of the influence exerted by ligament rupture on the motor system and permit development of rehabilitation protocols and exercises more appropriate for recovery of functional stability.
Scandinavian Journal of Medicine & Science in Sports | 2012
Jérôme Laurin; Erick Dousset; R. Carrivale; L. Grélot; Patrick Decherchi
We aimed at determining the recovery pattern of neural properties of soleus muscle after a single bout of neuromuscular electrical stimulation (NMES) session. Thirteen subjects performed an NMES exercise (75 Hz, 40 contractions, 6.25 s per contraction). Maximal voluntary contraction (MVC), H‐reflex at rest and during voluntary contraction fixed at 60% of MVC (respectively, Hmax and Hsup) and volitional (V) wave were measured before and during the recovery period following this exercise [i.e., immediately after, 2 h (H2), 2 days (D2) and 7 days (D7)]. MVC exhibited an immediate and a delayed declines at 2 days (respectively, −29.8±4.6%, P<0.001; −13.0±3.4%, P<0.05). Likewise, V/Msup was decreased immediately and 2 days after NMES session (respectively, −43.3±11.6%, P<0.05; 35.3±6.6%, P<0.05). The delayed decrements in MVC and V‐wave occurred concomitantly with muscle soreness peak (P<0.001). It could be concluded that motor command alterations after an NMES resistance session contributed to the immediate and also to the delayed decreases in MVC without affecting resting and active H‐reflex excitability. These results suggested that spinal circuitry function of larger motoneurons was inhibited by NMES (as indicated by the depressed V‐wave responses) contrary to the smaller one (indicated by the unchanged H‐reflex responses).