Erik B. Bloss
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik B. Bloss.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ilia N. Karatsoreos; Sarah M. Bhagat; Erik B. Bloss; John H. Morrison; Bruce S. McEwen
Circadian (daily) rhythms are present in almost all plants and animals. In mammals, a brain clock located in the hypothalamic suprachiasmatic nucleus maintains synchrony between environmental light/dark cycles and physiology and behavior. Over the past 100 y, especially with the advent of electric lighting, modern society has resulted in a round-the-clock lifestyle, in which natural connections between rest/activity cycles and environmental light/dark cycles have been degraded or even broken. Instances in which rapid changes to sleep patterns are necessary, such as transmeridian air travel, demonstrate negative effects of acute circadian disruption on physiology and behavior. However, the ramifications of chronic disruption of the circadian clock for mental and physical health are not yet fully understood. By housing mice in 20-h light/dark cycles, incongruous with their endogenous ∼24-h circadian period, we were able to model the effects of chronic circadian disruption noninvasively. Housing in these conditions results in accelerated weight gain and obesity, as well as changes in metabolic hormones. In the brain, circadian-disrupted mice exhibit a loss of dendritic length and decreased complexity of neurons in the prelimbic prefrontal cortex, a brain region important in executive function and emotional control. Disrupted animals show decreases in cognitive flexibility and changes in emotionality consistent with the changes seen in neural architecture. How our findings translate to humans living and working in chronic circadian disruption is unknown, but we believe that this model can provide a foundation to understand how environmental disruption of circadian rhythms impacts the brain, behavior, and physiology.
Neuroscience | 2009
Deena S. Goldwater; Constantine Pavlides; Richard G. Hunter; Erik B. Bloss; Patrick R. Hof; Bruce S. McEwen; John H. Morrison
Chronic stress has been shown in animal models to result in altered dendritic morphology of pyramidal neurons of the medial prefrontal cortex (mPFC). It has been hypothesized that the stress-induced dendritic retractions and spine loss lead to disrupted connectivity that results in stress-induced functional impairment of mPFC. While these alterations were initially viewed as a neurodegenerative event, it has recently been established that stress induced dendritic alterations are reversible if animals are given time to recover from chronic stress. However, whether spine growth accompanies dendritic extension remains to be demonstrated. It is also not known if recovery-phase dendritic extension allows for re-establishment of functional capacity. The goal of this study, therefore, was to characterize the structural and functional effects of chronic stress and recovery on the infralimbic (IL) region of the rat mPFC. We compared neuronal morphology of IL layer V pyramidal neurons from male Sprague-Dawley rats subjected to 21 days of chronic restraint stress (CRS) to those that experienced CRS followed by a 21 day recovery period. Layer V pyramidal cell functional capacity was assessed by intra-IL long-term potentiation (LTP) both in the absence and presence of SKF38393, a dopamine receptor partial agonist and a known PFC LTP modulator. We found that stress-induced IL apical dendritic retraction and spine loss co-occur with receptor-mediated impairments to catecholaminergic facilitation of synaptic plasticity. We also found that while post-stress recovery did not reverse distal dendritic retraction, it did result in over extension of proximal dendritic arbors and spine growth as well as a full reversal of CRS-induced impairments to catecholaminergic-mediated synaptic plasticity. Our results support the hypothesis that disease-related PFC dysfunction is a consequence of network disruption secondary to altered structural and functional plasticity and that circuitry reestablishment may underlie elements of recovery. Accordingly, we believe that pharmacological treatments targeted at preventing dendritic retraction and spine loss or encouraging circuitry re-establishment and stabilization may be advantageous in the prevention and treatment of mood and anxiety disorders.
The Journal of Neuroscience | 2010
Erik B. Bloss; William G.M. Janssen; Bruce S. McEwen; John H. Morrison
Neuronal networks in the prefrontal cortex mediate the highest levels of cognitive processing and decision making, and the capacity to perform these functions is among the cognitive features most vulnerable to aging. Despite much research, the neurobiological basis of age-related compromised prefrontal function remains elusive. Many investigators have hypothesized that exposure to stress may accelerate cognitive aging, though few studies have directly tested this hypothesis and even fewer have investigated a neuronal basis for such effects. It is known that in young animals, stress causes morphological remodeling of prefrontal pyramidal neurons that is reversible. The present studies sought to determine whether age influences the reversibility of stress-induced morphological plasticity in rat prefrontal neurons. We hypothesized that neocortical structural resilience is compromised in normal aging. To directly test this hypothesis we used a well characterized chronic restraint stress paradigm, with an additional group allowed to recover from the stress paradigm, in 3-, 12-, and 20-month-old male rats. In young animals, stress induced reductions of apical dendritic length and branch number, which were reversed with recovery; in contrast, middle-aged and aged rats failed to show reversible morphological remodeling when subjected to the same stress and recovery paradigm. The data presented here provide evidence that aging is accompanied by selective impairments in long-term neocortical morphological plasticity.
The Journal of Neuroscience | 2011
Erik B. Bloss; William G.M. Janssen; Daniel T. Ohm; Frank Yuk; Shannon Wadsworth; Karl M. Saardi; Bruce S. McEwen; John H. Morrison
Cognitive functions that require the prefrontal cortex are highly sensitive to aging in humans, nonhuman primates, and rodents, although the neurobiological correlates of this vulnerability remain largely unknown. It has been proposed that dendritic spines represent the primary site of structural plasticity in the adult brain, and recent data have supported the hypothesis that aging is associated with alterations of dendritic spine morphology and plasticity in prefrontal cortex. However, no study to date has directly examined whether aging alters the capacity for experience-dependent spine plasticity in aging prefrontal neurons. To address this possibility, we used young, middle-aged, and aged rats in a behavioral stress paradigm known to produce spine remodeling in prefrontal cortical neurons. In young rats, stress resulted in dendritic spine loss and altered patterns of spine morphology; in contrast, spines from middle-aged and aged animals were remarkably stable and did not show evidence of remodeling. The loss of stress-induced spine plasticity observed in aging rats occurred alongside robust age-related reductions in spine density and shifts in remaining spine morphology. Together, the data presented here provide the first evidence that experience-dependent spine plasticity is altered by aging in prefrontal cortex, and support a model in which dendritic spines become progressively less plastic in the aging brain.
The Journal of Neuroscience | 2010
Ozlem Bozdagi; Xiao-bin Wang; Jessica S. Nikitczuk; Tonya R. Anderson; Erik B. Bloss; Glenn L. Radice; Qiang Zhou; Deanna L. Benson; George W. Huntley
Persistent changes in spine shape are coupled to long-lasting synaptic plasticity in hippocampus. The molecules that coordinate such persistent structural and functional plasticity are unknown. Here, we generated mice in which the cell adhesion molecule N-cadherin was conditionally ablated from postnatal, excitatory synapses in hippocampus. We applied to adult mice of either sex a combination of whole-cell recording, two-photon microscopy, and spine morphometric analysis to show that postnatal ablation of N-cadherin has profound effects on the stability of coordinated spine enlargement and long-term potentiation (LTP) at mature CA1 synapses, with no effects on baseline spine density or morphology, baseline properties of synaptic neurotransmission, or long-term depression. Thus, N-cadherin couples persistent spine structural modifications with long-lasting synaptic functional modifications associated selectively with LTP, revealing unexpectedly distinct roles at mature synapses in comparison with earlier, broader functions in synapse and spine development.
Neuron | 2012
Austin R. Graves; Shannon J. Moore; Erik B. Bloss; Brett D. Mensh; William L. Kath; Nelson Spruston
Relating the function of neuronal cell types to information processing and behavior is a central goal of neuroscience. In the hippocampus, pyramidal cells in CA1 and the subiculum process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information, which they transmit throughout the brain. Do these cells constitute a single class or are there multiple cell types with specialized functions? Using unbiased cluster analysis, we show that there are two morphologically and electrophysiologically distinct principal cell types that carry hippocampal output. We show further that these two cell types are inversely modulated by the synergistic action of glutamate and acetylcholine acting on metabotropic receptors that are central to hippocampal function. Combined with prior connectivity studies, our results support a model of hippocampal processing in which the two pyramidal cell types are predominantly segregated into two parallel pathways that process distinct modalities of information.Relating the function of neuronal cell types to information processing and behavior is a central goal of neuroscience. In the hippocampus, pyramidal cells in CA1 and the subiculum process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information, which they transmit throughout the brain. Do these cells constitute a single class or are there multiple cell types with specialized functions? Using unbiased cluster analysis, we show that there are two morphologically and electrophysiologically distinct principal cell types that carry hippocampal output. We show further that these two cell types are inversely modulated by the synergistic action of glutamate and acetylcholine acting on metabotropic receptors that are central to hippocampal function. Combined with prior connectivity studies, our results support a model of hippocampal processing in which the two pyramidal cell types are predominantly segregated into two parallel pathways that process distinct modalities of information.
PLOS Biology | 2009
Minhua Zhang; Michal Poplawski; Kelvin Yen; Hui Cheng; Erik B. Bloss; Xiao Zhu; Harshil Patel; Charles V. Mobbs
Increased transcriptional complex activity, or pharmacological mimics of increased complex activity, predict lifespan in mice and mediate the protective effects of dietary restriction during aging.
Brain Research | 2007
Richard G. Hunter; Rudy Bellani; Erik B. Bloss; Ana S.H. Costa; Russell D. Romeo; Bruce S. McEwen
CART (Cocaine-Amphetamine-Regulated Transcript) has been shown to be regulated by corticosteroids in the hypothalamus, but its regulation by corticosteroids and stress has not been well examined in the hippocampus or the amygdala. Further, CART has been implicated in the transition to puberty. In this study we examine the effects of acute (30 min) stress on CART mRNA in prepubescent and adult rats. In addition, we examined chronic (21 day x 6 h) restraint stress upon the expression of CART mRNA in the hippocampus and the amygdala and the effects of 7 days of adrenalectomy and corticosteroid replacement upon CART expression in these regions of the adult rat brain. We found an up-regulation of CART mRNA in the central amygdala induced by acute but not chronic stress and an up-regulation in the dentate gyrus induced by chronic but not acute stress. Adrenalectomy reduced CART expression in the dentate gyrus but not the amygdala and this effect was blocked by corticosterone but not RU28,362 or aldosterone replacement, suggesting a synergism of mineralocorticoid and glucocorticoid receptors. Our data establish that CART expression is regulated by stress in a regionally and time specific manner and that CART is regulated by corticosteroid actions in the hippocampus.
Experimental Neurology | 2008
Erik B. Bloss; Richard G. Hunter; Elizabeth M. Waters; Carmen Muñoz; Katie Bernard; Bruce S. McEwen
AMPA receptors are a major subtype of ionotropic receptors that respond to glutamate. Positive allosteric modulators of AMPA receptors selectively enhance fast excitatory neurotransmission in the brain and increase overall neuronal excitability. In addition to enhancing cognitive performance, S18986 (Servier, France) and other AMPA receptor modulators have also been shown to be neuroprotective. A particularly relevant context for AMPAR modulator studies is during aging because of increased neuronal vulnerability. It is currently unknown if chronic AMPAR modulator treatment can alter the course of brain aging, a process characterized by impairment of cognitive function, reduced neuronal excitability, and increased inflammation in the brain. We examined the behavioral and some relevant CNS effects of chronic S18986 in rats from 14 to 18 months of age. Here we show that chronic, oral administration of S18986 increases locomotor activity and performance in a spatial memory task in aged rodents. In addition, chronic S18986 treatment retards the decline of forebrain cholinergic neurons by roughly 37% and midbrain dopaminergic neurons by as much as 43% during aging and attenuates the age-related increase in the expression of a microglial marker in the hippocampus. These results provide a framework for further studies of the potentially beneficial effects of AMPAR modulators on brain aging.
Neuron | 2016
Erik B. Bloss; Mark S. Cembrowski; Bill Karsh; Jennifer Colonell; Richard D. Fetter; Nelson Spruston
Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation.