Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik B. Dopman is active.

Publication


Featured researches published by Erik B. Dopman.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A genome-wide view of the spectrum of spontaneous mutations in yeast

Michael Lynch; Way Sung; Krystalynne Morris; Nicole Coffey; Christian R. Landry; Erik B. Dopman; W. Joseph Dickinson; Kazufusa Okamoto; Shilpa Kulkarni; Daniel L. Hartl; W. Kelley Thomas

The mutation process ultimately defines the genetic features of all populations and, hence, has a bearing on a wide range of issues involving evolutionary genetics, inheritance, and genetic disorders, including the predisposition to cancer. Nevertheless, formidable technical barriers have constrained our understanding of the rate at which mutations arise and the molecular spectrum of their effects. Here, we report on the use of complete-genome sequencing in the characterization of spontaneously arising mutations in the yeast Saccharomyces cerevisiae. Our results confirm some findings previously obtained by indirect methods but also yield numerous unexpected findings, in particular a very high rate of point mutation and skewed distribution of base-substitution types in the mitochondrion, a very high rate of segmental duplication and deletion in the nuclear genome, and substantial deviations in the mutational profile among various model organisms.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A portrait of copy-number polymorphism in Drosophila melanogaster

Erik B. Dopman; Daniel L. Hartl

Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges CB (1936) Science 83:210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is nonrandomly distributed, presumably because of a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation.


Evolution | 2009

COMPONENTS OF REPRODUCTIVE ISOLATION BETWEEN NORTH AMERICAN PHEROMONE STRAINS OF THE EUROPEAN CORN BORER

Erik B. Dopman; Paul S. Robbins; Abby Seaman

Of 12 potential reproductive isolating barriers between closely related Z‐ and E‐pheromone strains of the European corn borer moth (Ostrinia nubilalis), seven significantly reduced gene flow but none were complete, suggesting that speciation in this lineage is a gradual process in which multiple barriers of intermediate strength accumulate. Estimation of the cumulative effect of all barriers resulted in nearly complete isolation (>99%), but geographic variation in seasonal isolation allowed as much as ∼10% gene flow. With the strongest barriers arising from mate‐selection behavior or ecologically relevant traits, sexual and natural selection are the most likely evolutionary processes driving population divergence. A recent multilocus genealogical study corroborates the roles of selection and gene flow ( Dopman et al. 2005 ), because introgression is supported at all loci besides Tpi, a sex‐linked gene. Tpi reveals strains as exclusive groups, possesses signatures of selection, and is tightly linked to a QTL that contributes to seasonal isolation. With more than 98% of total cumulative isolation consisting of prezygotic barriers, Z and E strains of ECB join a growing list of taxa in which species boundaries are primarily maintained by the prevention of hybridization, possibly because premating barriers evolve during early stages of population divergence.


Genome Biology and Evolution | 2011

Copy-number variation: the balance between gene dosage and expression in Drosophila melanogaster.

Jun Zhou; Bernardo Lemos; Erik B. Dopman; Daniel L. Hartl

Copy-number variants (CNVs) reshape gene structure, modulate gene expression, and contribute to significant phenotypic variation. Previous studies have revealed CNV patterns in natural populations of Drosophila melanogaster and suggested that selection and mutational bias shape genomic patterns of CNV. Although previous CNV studies focused on heterogeneous strains, here, we established a number of second-chromosome substitution lines to uncover CNV characteristics when homozygous. The percentage of genes harboring CNVs is higher than found in previous studies. More CNVs are detected in homozygous than heterozygous substitution strains, suggesting the comparative genomic hybridization arrays underestimate CNV owing to heterozygous masking. We incorporated previous gene expression data collected from some of the same substitution lines to investigate relationships between CNV gene dosage and expression. Most genes present in CNVs show no evidence of increased or diminished transcription, and the fraction of such dosage-insensitive CNVs is greater in heterozygotes. More than 70% of the dosage-sensitive CNVs are recessive with undetectable effects on transcription in heterozygotes. A deficiency of singletons in recessive dosage-sensitive CNVs supports the hypothesis that most CNVs are subject to negative selection. On the other hand, relaxed purifying selection might account for the higher number of protein–protein interactions in dosage-insensitive CNVs than in dosage-sensitive CNVs. Dosage-sensitive CNVs that are upregulated and downregulated coincide with copy-number increases and decreases. Our results help clarify the relation between CNV dosage and gene expression in the D. melanogaster genome.


Genetics | 2007

Molecular differentiation at nuclear loci in French host races of the European corn borer (Ostrinia nubilalis)

Thibaut Malausa; Laurianne Leniaud; Jean Francxois Martin; Philippe Audiot; Denis Bourguet; Sergine Ponsard; Siu Fai Lee; Richard G. Harrison; Erik B. Dopman

French populations of the European corn borer consist of two sympatric and genetically differentiated host races. As such, they are well suited to study processes that could be involved in sympatric speciation, but the initial conditions of host-race divergence need to be elucidated. Gene genealogies can provide insight into the processes involved in speciation. We used DNA sequences of four nuclear genes to (1) document the genetic structure of the two French host races previously delineated with allozyme markers, (2) find genes directly or indirectly involved in reproductive isolation between host races, and (3) estimate the time since divergence of the two taxa and see whether this estimate is compatible with this divergence being the result of a host shift onto maize after its introduction into Europe ∼500 years ago. Gene genealogies revealed extensive shared polymorphism, but confirmed the previously observed genetic differentiation between the two host races. Significant departures from the predictions of neutral molecular evolution models were detected at three loci but were apparently unrelated to reproductive isolation between host races. Estimates of time since divergence between French host races varied from ∼75,000 to ∼150,000 years, suggesting that the two taxa diverged recently but probably long before the introduction of maize into Europe.


Genome Biology and Evolution | 2009

Population Genomic Inferences from Sparse High-Throughput Sequencing of Two Populations of Drosophila melanogaster

Timothy B. Sackton; Rob J. Kulathinal; Casey M. Bergman; Aaron R. Quinlan; Erik B. Dopman; Mauricio O. Carneiro; Gabor T. Marth; Daniel L. Hartl; Andrew G. Clark

Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2× coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics.


Journal of Evolutionary Biology | 2013

One phase of the dormancy developmental pathway is critical for the evolution of insect seasonality.

Crista B. Wadsworth; W. A. Woods; Daniel A. Hahn; Erik B. Dopman

Evolutionary change in the timing of dormancy enables animals and plants to adapt to changing seasonal environments and can result in ecological speciation. Despite its clear biological importance, the mechanisms underlying the evolution of dormancy timing in animals remain poorly understood because of a lack of anatomical landmarks to discern which phase of dormancy an individual is experiencing. Taking advantage of the nearly universal characteristic of metabolic suppression during insect dormancy (diapause), we use patterns of respiratory metabolism to document physiological landmarks of dormancy and test which of the distinct phases of the dormancy developmental pathway contribute to a month‐long shift in diapause timing between a pair of incipient moth species. Here, we show that divergence in life cycle between the earlier‐emerging E‐strain and the later‐emerging Z‐strain of European corn borer (ECB) is clearly explained by a delay in the timing of the developmental transition from the diapause maintenance phase to the termination phase. Along with recent findings indicating that life‐cycle differences between ECB strains stem from allelic variation at a single sex‐linked locus, our results demonstrate how dramatic shifts in animal seasonality can result from simple developmental and genetic changes. Although characterizing the multiple phases of the diapause developmental programme in other locally adapted populations and species will undoubtedly yield surprises about the nature of animal dormancy, results in the ECB moth suggest that focusing on genetic variation in the timing of the dormancy termination phase may help explain how (or whether) organisms rapidly respond to global climate change, expand their ranges after accidental or managed introductions, undergo seasonal adaptation, or evolve into distinct species through allochronic isolation.


The Journal of Experimental Biology | 2015

Transcriptome profiling reveals mechanisms for the evolution of insect seasonality

Crista B. Wadsworth; Erik B. Dopman

ABSTRACT Rapid evolutionary change in seasonal timing can facilitate ecological speciation and resilience to climate warming. However, the molecular mechanisms behind shifts in animal seasonality are still unclear. Evolved differences in seasonality occur in the European corn borer moth (Ostrinia nubilalis), in which early summer emergence in E-strain adults and later summer emergence in Z-strain adults is explained by a shift in the length of the termination phase of larval diapause. Here, we sample from the developmental time course of diapause in both strains and use transcriptome sequencing to profile regulatory and amino acid changes associated with timing divergence. Within a previously defined quantitative trait locus (QTL), we nominate 48 candidate genes, including several in the insulin signaling and circadian rhythm pathways. Genome-wide transcriptional activity is negligible during the extended Z-strain termination, whereas shorter E-strain termination is characterized by a rapid burst of regulatory changes involved in resumption of the cell cycle, hormone production and stress response. Although gene expression during diapause termination in Ostrinia is similar to that found previously in flies, nominated genes for shifts in timing are species specific. Hence, across distant relatives the evolution of insect seasonality appears to involve unique genetic switches that direct organisms into distinct phases of the diapause pathway through wholesale restructuring of conserved gene regulatory networks. Summary: Evolutionary changes to the timing of diapause will be key for insects to adapt to a globally warming climate; putative loci responsible for timing shifts are identified.


Journal of Evolutionary Biology | 2015

Explaining the sawtooth: latitudinal periodicity in a circadian gene correlates with shifts in generation number

R. C. Levy; Genevieve M. Kozak; Crista B. Wadsworth; Brad S. Coates; Erik B. Dopman

Many temperate insects take advantage of longer growing seasons at lower latitudes by increasing their generation number or voltinism. In some insects, development time abruptly decreases when additional generations are fit into the season. Consequently, latitudinal ‘sawtooth’ clines associated with shifts in voltinism are seen for phenotypes correlated with development time, like body size. However, latitudinal variation in voltinism has not been linked to genetic variation at specific loci. Here, we show a pattern in allele frequency among voltinism ecotypes of the European corn borer moth (Ostrinia nubilalis) that is reminiscent of a sawtooth cline. We characterized 145 autosomal and sex‐linked SNPs and found that period, a circadian gene that is genetically linked to a major QTL determining variation in post‐diapause development time, shows cyclical variation between voltinism ecotypes. Allele frequencies at an unlinked circadian clock gene cryptochrome1 were correlated with period. These results suggest that selection on development time to ‘fit’ complete life cycles into a latitudinally varying growing season produces oscillations in alleles associated with voltinism, primarily through changes at loci underlying the duration of transitions between diapause and other life history phases. Correlations among clock loci suggest possible coupling between the circadian clock and the circannual rhythms for synchronizing seasonal life history. We anticipate that latitudinal oscillations in allele frequency will represent signatures of adaptation to seasonal environments in other insects and may be critical to understanding the ecological and evolutionary consequences of variable environments, including response to global climate change.


BMC Genomics | 2014

Using RNA sequencing to characterize female reproductive genes between Z and E Strains of European Corn Borer moth (Ostrinia nubilalis)

Nooria Al-Wathiqui; Sara M. Lewis; Erik B. Dopman

BackgroundReproductive proteins often evolve rapidly and are thought to be subject to strong sexual selection, and thus may play a key role in reproductive isolation and species divergence. However, our knowledge of reproductive proteins has been largely limited to males and model organisms with sequenced genomes. With advances in sequencing technology, Lepidoptera are emerging models for studies of sexual selection and speciation. By profiling the transcriptomes of the bursa copulatrix and bursal gland from females of two incipient species of moth, we characterize reproductive genes expressed in the primary reproductive tissues of female Lepidoptera and identify candidate genes contributing to a one-way gametic incompatibility between Z and E strains of the European corn borer (Ostrinia nubilalis).ResultsUsing RNA sequencing we identified transcripts from ~37,000 and ~36,000 loci that were expressed in the bursa copulatrix or the bursal gland respectively. Of bursa copulatrix genes, 8% were significantly differentially expressed compared to the female thorax, and those that were up-regulated or specific to the bursa copulatrix showed functional biases toward muscle activity and/or organization. In the bursal gland, 9% of genes were differentially expressed compared to the thorax, with many showing reproduction or gamete production functions. Of up-regulated bursal gland genes, 46% contained a transmembrane region and 16% possessed secretion signal peptides. Divergently expressed genes in the bursa copulatrix were exclusively biased toward protease-like functions and 51 proteases or protease inhibitors were divergently expressed overall.ConclusionsThis is the first comprehensive characterization of female reproductive genes in any lepidopteran system. The transcriptome of the bursa copulatrix supports its role as a muscular sac that is the primary site for disruption of the male ejaculate. We find that the bursal gland acts as a reproductive secretory body that might also interact with male ejaculate. In addition, differential expression of proteases between strains supports a potential role for these tissues in contributing to reproductive isolation. Our study provides new insight into how male ejaculate is processed by female Lepidoptera, and paves the way for future work on interactions between post-mating sexual selection and speciation.

Collaboration


Dive into the Erik B. Dopman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad S. Coates

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge