Erik B. van den Akker
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik B. van den Akker.
Human Molecular Genetics | 2014
Joris Deelen; Marian Beekman; Hae-Won Uh; Linda Broer; Kristin L. Ayers; Qihua Tan; Yoichiro Kamatani; Anna M. Bennet; Riin Tamm; Stella Trompet; Daníel F. Guðbjartsson; Friederike Flachsbart; Giuseppina Rose; Alexander Viktorin; Krista Fischer; Marianne Nygaard; Heather J. Cordell; Paolina Crocco; Erik B. van den Akker; Stefan Böhringer; Quinta Helmer; Christopher P. Nelson; Gary Saunders; Maris Alver; Karen Andersen-Ranberg; Marie E. Breen; Ruud van der Breggen; Amke Caliebe; Miriam Capri; Elisa Cevenini
The genetic contribution to the variation in human lifespan is ∼25%. Despite the large number of identified disease-susceptibility loci, it is not known which loci influence population mortality. We performed a genome-wide association meta-analysis of 7729 long-lived individuals of European descent (≥85 years) and 16 121 younger controls (<65 years) followed by replication in an additional set of 13 060 long-lived individuals and 61 156 controls. In addition, we performed a subset analysis in cases aged ≥90 years. We observed genome-wide significant association with longevity, as reflected by survival to ages beyond 90 years, at a novel locus, rs2149954, on chromosome 5q33.3 (OR = 1.10, P = 1.74 × 10−8). We also confirmed association of rs4420638 on chromosome 19q13.32 (OR = 0.72, P = 3.40 × 10−36), representing the TOMM40/APOE/APOC1 locus. In a prospective meta-analysis (n = 34 103), the minor allele of rs2149954 (T) on chromosome 5q33.3 associates with increased survival (HR = 0.95, P = 0.003). This allele has previously been reported to associate with low blood pressure in middle age. Interestingly, the minor allele (T) associates with decreased cardiovascular mortality risk, independent of blood pressure. We report on the first GWAS-identified longevity locus on chromosome 5q33.3 influencing survival in the general European population. The minor allele of this locus associates with low blood pressure in middle age, although the contribution of this allele to survival may be less dependent on blood pressure. Hence, the pleiotropic mechanisms by which this intragenic variation contributes to lifespan regulation have to be elucidated.
Epigenetics & Chromatin | 2013
Roderick C. Slieker; S.D. Bos; Jelle J. Goeman; Rudolf P. Talens; Ruud van der Breggen; H. Eka D. Suchiman; Eric-Wubbo Lameijer; Hein Putter; Erik B. van den Akker; Yanju Zhang; J. Wouter Jukema; P. Eline Slagboom; Ingrid Meulenbelt; Bastiaan T. Heijmans
BackgroundDNA methylation has been recognized as a key mechanism in cell differentiation. Various studies have compared tissues to characterize epigenetically regulated genomic regions, but due to differences in study design and focus there still is no consensus as to the annotation of genomic regions predominantly involved in tissue-specific methylation. We used a new algorithm to identify and annotate tissue-specific differentially methylated regions (tDMRs) from Illumina 450k chip data for four peripheral tissues (blood, saliva, buccal swabs and hair follicles) and six internal tissues (liver, muscle, pancreas, subcutaneous fat, omentum and spleen with matched blood samples).ResultsThe majority of tDMRs, in both relative and absolute terms, occurred in CpG-poor regions. Further analysis revealed that these regions were associated with alternative transcription events (alternative first exons, mutually exclusive exons and cassette exons). Only a minority of tDMRs mapped to gene-body CpG islands (13%) or CpG islands shores (25%) suggesting a less prominent role for these regions than indicated previously. Implementation of ENCODE annotations showed enrichment of tDMRs in DNase hypersensitive sites and transcription factor binding sites. Despite the predominance of tissue differences, inter-individual differences in DNA methylation in internal tissues were correlated with those for blood for a subset of CpG sites in a locus- and tissue-specific manner.ConclusionsWe conclude that tDMRs preferentially occur in CpG-poor regions and are associated with alternative transcription. Furthermore, our data suggest the utility of creating an atlas cataloguing variably methylated regions in internal tissues that correlate to DNA methylation measured in easy accessible peripheral tissues.
Aging Cell | 2013
Marian Beekman; Hélène Blanché; Markus Perola; Anti Hervonen; Vladyslav Bezrukov; Ewa Sikora; Friederike Flachsbart; Lene Christiansen; Anton J. M. de Craen; Thomas B. L. Kirkwood; Irene Maeve Rea; Michel Poulain; Jean-Marie Robine; Silvana Valensin; Maria Antonietta Stazi; Giuseppe Passarino; Luca Deiana; Efstathios S. Gonos; Lavinia Paternoster; Thorkild Ingvor Arrild Sørensen; Qihua Tan; Quinta Helmer; Erik B. van den Akker; Joris Deelen; Francesca Martella; Heather J. Cordell; Kristin L. Ayers; James W. Vaupel; Outi Törnwall; Thomas E. Johnson
Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome‐wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12‐q22 (LOD = 2.95), chromosome 19p13.3‐p13.11 (LOD = 3.76), and chromosome 19q13.11‐q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed‐effect meta‐analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (P‐value = 9.6 × 10−8). By combined modeling of linkage and association, we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11‐q13.32 with P‐value = 0.02 and P‐value = 1.0 × 10−5, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12‐q22, and 19p13.3‐p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
Age | 2013
Joris Deelen; Hae-Won Uh; Ramin Monajemi; Diana van Heemst; Peter E. Thijssen; Stefan Böhringer; Erik B. van den Akker; Anton J. M. de Craen; Fernando Rivadeneira; André G. Uitterlinden; Rudi G. J. Westendorp; Jelle J. Goeman; P. Eline Slagboom; Jeanine J. Houwing-Duistermaat; Marian Beekman
In genome-wide association studies (GWAS) of complex traits, single SNP analysis is still the most applied approach. However, the identified SNPs have small effects and provide limited biological insight. A more appropriate approach to interpret GWAS data of complex traits is to analyze the combined effect of a SNP set grouped per pathway or gene region. We used this approach to study the joint effect on human longevity of genetic variation in two candidate pathways, the insulin/insulin-like growth factor (IGF-1) signaling (IIS) pathway and the telomere maintenance (TM) pathway. For the analyses, we used genotyped GWAS data of 403 unrelated nonagenarians from long-lived sibships collected in the Leiden Longevity Study and 1,670 younger population controls. We analyzed 1,021 SNPs in 68 IIS pathway genes and 88 SNPs in 13 TM pathway genes using four self-contained pathway tests (PLINK set-based test, Global test, GRASS and SNP ratio test). Although we observed small differences between the results of the different pathway tests, they showed consistent significant association of the IIS and TM pathway SNP sets with longevity. Analysis of gene SNP sets from these pathways indicates that the association of the IIS pathway is scattered over several genes (AKT1, AKT3, FOXO4, IGF2, INS, PIK3CA, SGK, SGK2, and YWHAG), while the association of the TM pathway seems to be mainly determined by one gene (POT1). In conclusion, this study shows that genetic variation in genes involved in the IIS and TM pathways is associated with human longevity.
Annals of the Rheumatic Diseases | 2014
Nils Bomer; Wouter den Hollander; Y.F. Ramos; S.D. Bos; Ruud van der Breggen; N. Lakenberg; Barry Antonius Pepers; Annelies E van Eeden; Arash Darvishan; Elmar W. Tobi; B.J. Duijnisveld; Erik B. van den Akker; Bastiaan T. Heijmans; Willeke Mc van Roon-Mom; Fons J. Verbeek; Gerjo J.V.M. van Osch; Rob G. H. H. Nelissen; P. Eline Slagboom; Ingrid Meulenbelt
Objectives To investigate how the genetic susceptibility gene DIO2 confers risk to osteoarthritis (OA) onset in humans and to explore whether counteracting the deleterious effect could contribute to novel therapeutic approaches. Methods Epigenetically regulated expression of DIO2 was explored by assessing methylation of positional CpG-dinucleotides and the respective DIO2 expression in OA-affected and macroscopically preserved articular cartilage from end-stage OA patients. In a human in vitro chondrogenesis model, we measured the effects when thyroid signalling during culturing was either enhanced (excess T3 or lentiviral induced DIO2 overexpression) or decreased (iopanoic acid). Results OA-related changes in methylation at a specific CpG dinucleotide upstream of DIO2 caused significant upregulation of its expression (β=4.96; p=0.0016). This effect was enhanced and appeared driven specifically by DIO2 rs225014 risk allele carriers (β=5.58, p=0.0006). During in vitro chondrogenesis, DIO2 overexpression resulted in a significant reduced capacity of chondrocytes to deposit extracellular matrix (ECM) components, concurrent with significant induction of ECM degrading enzymes (ADAMTS5, MMP13) and markers of mineralisation (ALPL, COL1A1). Given their concurrent and significant upregulation of expression, this process is likely mediated via HIF-2α/RUNX2 signalling. In contrast, we showed that inhibiting deiodinases during in vitro chondrogenesis contributed to prolonged cartilage homeostasis as reflected by significant increased deposition of ECM components and attenuated upregulation of matrix degrading enzymes. Conclusions Our findings show how genetic variation at DIO2 could confer risk to OA and raised the possibility that counteracting thyroid signalling may be a novel therapeutic approach.
Aging Cell | 2014
Erik B. van den Akker; Willemijn M. Passtoors; Erik W. van Zwet; Jelle J. Goeman; Valur Emilsson; Bas T. Heijmans; Andrea B. Maier; I. Boomsma; Joost N. Kok; P.E. Slagboom; Marcel J. T. Reinders
The bodily decline that occurs with advancing age strongly impacts on the prospects for future health and life expectancy. Despite the profound role of age in disease etiology, knowledge about the molecular mechanisms driving the process of aging in humans is limited. Here, we used an integrative network‐based approach for combining multiple large‐scale expression studies in blood (2539 individuals) with protein–protein Interaction (PPI) data for the detection of consistently coexpressed PPI modules that may reflect key processes that change throughout the course of normative aging. Module detection followed by a meta‐analysis on chronological age identified fifteen consistently coexpressed PPI modules associated with chronological age, including a highly significant module (P = 3.5 × 10−38) enriched for ‘T‐cell activation’ marking age‐associated shifts in lymphocyte blood cell counts (R2 = 0.603; P = 1.9 × 10−10). Adjusting the analysis in the compendium for the ‘T‐cell activation’ module showed five consistently coexpressed PPI modules that robustly associated with chronological age and included modules enriched for ‘Translational elongation’, ‘Cytolysis’ and ‘DNA metabolic process’. In an independent study of 3535 individuals, four of five modules consistently associated with chronological age, underpinning the robustness of the approach. We found three of five modules to be significantly enriched with aging‐related genes, as defined by the GenAge database, and association with prospective survival at high ages for one of the modules including ASF1A. The hereby‐detected age‐associated and consistently coexpressed PPI modules therefore may provide a molecular basis for future research into mechanisms underlying human aging.
WOS | 2014
Erik B. van den Akker; Willemijn M. Passtoors; Rick Jansen; Erik W. van Zwet; Jelle J. Goeman; Marc Hulsman; Valur Emilsson; Markus Perola; Gonneke Willemsen; Brenda W.J.H. Penninx; Bas T. Heijmans; Andrea B. Maier; Dorret I. Boomsma; Joost N. Kok; P.E. Slagboom; Marcel J. T. Reinders; Marian Beekman
The bodily decline that occurs with advancing age strongly impacts on the prospects for future health and life expectancy. Despite the profound role of age in disease etiology, knowledge about the molecular mechanisms driving the process of aging in humans is limited. Here, we used an integrative network‐based approach for combining multiple large‐scale expression studies in blood (2539 individuals) with protein–protein Interaction (PPI) data for the detection of consistently coexpressed PPI modules that may reflect key processes that change throughout the course of normative aging. Module detection followed by a meta‐analysis on chronological age identified fifteen consistently coexpressed PPI modules associated with chronological age, including a highly significant module (P = 3.5 × 10−38) enriched for ‘T‐cell activation’ marking age‐associated shifts in lymphocyte blood cell counts (R2 = 0.603; P = 1.9 × 10−10). Adjusting the analysis in the compendium for the ‘T‐cell activation’ module showed five consistently coexpressed PPI modules that robustly associated with chronological age and included modules enriched for ‘Translational elongation’, ‘Cytolysis’ and ‘DNA metabolic process’. In an independent study of 3535 individuals, four of five modules consistently associated with chronological age, underpinning the robustness of the approach. We found three of five modules to be significantly enriched with aging‐related genes, as defined by the GenAge database, and association with prospective survival at high ages for one of the modules including ASF1A. The hereby‐detected age‐associated and consistently coexpressed PPI modules therefore may provide a molecular basis for future research into mechanisms underlying human aging.
Twin Research and Human Genetics | 2013
Kai Ye; Marian Beekman; Eric-Wubbo Lameijer; Yanju Zhang; Matthijs Moed; Erik B. van den Akker; Joris Deelen; Jeanine J. Houwing-Duistermaat; Dennis Kremer; Seyed Yahya Anvar; Jeroen F. J. Laros; David Jones; Keiran Raine; Ben Blackburne; Shobha Potluri; Quan Long; Victor Guryev; Ruud van der Breggen; Rudi G. J. Westendorp; Peter A. C. 't Hoen; Johan T. den Dunnen; Gert Jan B. van Ommen; Gonneke Willemsen; Steven J. Pitts; David R. Cox; Zemin Ning; Dorret I. Boomsma; P. Eline Slagboom
It has been postulated that aging is the consequence of an accelerated accumulation of somatic DNA mutations and that subsequent errors in the primary structure of proteins ultimately reach levels sufficient to affect organismal functions. The technical limitations of detecting somatic changes and the lack of insight about the minimum level of erroneous proteins to cause an error catastrophe hampered any firm conclusions on these theories. In this study, we sequenced the whole genome of DNA in whole blood of two pairs of monozygotic (MZ) twins, 40 and 100 years old, by two independent next-generation sequencing (NGS) platforms (Illumina and Complete Genomics). Potentially discordant single-base substitutions supported by both platforms were validated extensively by Sanger, Roche 454, and Ion Torrent sequencing. We demonstrate that the genomes of the two twin pairs are germ-line identical between co-twins, and that the genomes of the 100-year-old MZ twins are discerned by eight confirmed somatic single-base substitutions, five of which are within introns. Putative somatic variation between the 40-year-old twins was not confirmed in the validation phase. We conclude from this systematic effort that by using two independent NGS platforms, somatic single nucleotide substitutions can be detected, and that a century of life did not result in a large number of detectable somatic mutations in blood. The low number of somatic variants observed by using two NGS platforms might provide a framework for detecting disease-related somatic variants in phenotypically discordant MZ twins.
Journal of Integrative Bioinformatics | 2011
Erik B. van den Akker; Bas Verbruggen; Bas T. Heijmans; Marian Beekman; Joost N. Kok; P.E. Slagboom; Marcel J. T. Reinders
Multiple studies have illustrated that gene expression profiling of primary breast cancers throughout the final stages of tumor development can provide valuable markers for risk prediction of metastasis and disease sub typing. However, the identification of a biologically interpretable and universally shared set of markers proved to be difficult. Here, we propose a method for de novo grouping of genes by dissecting the protein-protein interaction network into disjoint sub networks using pair wise gene expression correlation measures. We show that the obtained sub networks are functionally coherent and are consistently identified when applied on a compendium composed of six different breast cancer studies. Application of the proposed method using different integration approaches underlines the robustness of the identified sub network related to cell cycle and identifies putative new sub network markers for metastasis related to cell-cell adhesion, the proteasome complex and JUN-FOS signalling. Although gene selection with the proposed method does not directly improve upon previously reported cross study classification performances, it shows great promises for applications in data integration and result interpretation.
Scientific Reports | 2016
Fenni Rusli; Joris Deelen; Evi Andriyani; Mark V. Boekschoten; Carolien Lute; Erik B. van den Akker; Michael Müller; Marian Beekman; Wilma T. Steegenga
Fibroblast growth factor 21 (Fgf21) has emerged as a potential plasma marker to diagnose non-alcoholic fatty liver disease (NAFLD). To study the molecular processes underlying the association of plasma Fgf21 with NAFLD, we explored the liver transcriptome data of a mild NAFLD model of aging C57BL/6J mice at 12, 24, and 28 months of age. The plasma Fgf21 level significantly correlated with intrahepatic triglyceride content. At the molecular level, elevated plasma Fgf21 levels were associated with dysregulated metabolic and cancer-related pathways. The up-regulated Fgf21 levels in NAFLD were implied to be a protective response against the NAFLD-induced adverse effects, e.g. lipotoxicity, oxidative stress and endoplasmic reticulum stress. An in vivo PPARα challenge demonstrated the dysregulation of PPARα signalling in the presence of NAFLD, which resulted in a stochastically increasing hepatic expression of Fgf21. Notably, elevated plasma Fgf21 was associated with declining expression of Klb, Fgf21’s crucial co-receptor, which suggests a resistance to Fgf21. Therefore, although liver fat accumulation is a benign stage of NAFLD, the elevated plasma Fgf21 likely indicated vulnerability to metabolic stressors that may contribute towards progression to end-stage NAFLD. In conclusion, plasma levels of Fgf21 reflect liver fat accumulation and dysregulation of metabolic pathways in the liver.