Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Bongcam-Rudloff is active.

Publication


Featured researches published by Erik Bongcam-Rudloff.


BMC Systems Biology | 2014

Data integration in the era of omics: current and future challenges

David Gomez-Cabrero; Imad Abugessaisa; Dieter Maier; Andrew E. Teschendorff; Matthias Merkenschlager; Andreas Gisel; Esteban Ballestar; Erik Bongcam-Rudloff; Ana Conesa; Jesper Tegnér

To integrate heterogeneous and large omics data constitutes not only a conceptual challenge but a practical hurdle in the daily analysis of omics data. With the rise of novel omics technologies and through large-scale consortia projects, biological systems are being further investigated at an unprecedented scale generating heterogeneous and often large data sets. These data-sets encourage researchers to develop novel data integration methodologies. In this introduction we review the definition and characterize current efforts on data integration in the life sciences. We have used a web-survey to assess current research projects on data-integration to tap into the views, needs and challenges as currently perceived by parts of the research community.


European Journal of Clinical Investigation | 2012

Implementation of proteomic biomarkers: Making it work

Harald Mischak; John P. A. Ioannidis; Àngel Argilés; Teresa K. Attwood; Erik Bongcam-Rudloff; Mark Broenstrup; Aristidis Charonis; George P. Chrousos; Christian Delles; Anna F. Dominiczak; Tomasz Dylag; Jochen H. H. Ehrich; Jesús Egido; Peter Findeisen; Joachim Jankowski; Robert W. Johnson; Bruce A. Julien; Tim O. Lankisch; Hing Y. Leung; David M. Maahs; Fulvio Magni; Michael P. Manns; Efthymios Manolis; Gert Mayer; Gerarda Navis; Jan Novak; Alberto Ortiz; Frederik Persson; Karlheinz Peter; Hans H. Riese

Eur J Clin Invest 2012; 42 (9): 1027–1036


Proteomics Clinical Applications | 2010

Comprehensive human urine standards for comparability and standardization in clinical proteome analysis

Harald Mischak; Walter Kolch; Michalis Aivaliotis; David Bouyssié; Magali Court; Hassan Dihazi; Gry H. Dihazi; Julia Franke; Jérôme Garin; Anne Gonzalez de Peredo; Alexander Iphöfer; Lothar Jänsch; Chrystelle Lacroix; Manousos Makridakis; Christophe Masselon; Jochen Metzger; Bernard Monsarrat; Michal Mrug; Martin Norling; Jan Novak; Andreas Pich; Andrew R. Pitt; Erik Bongcam-Rudloff; Justyna Siwy; Hitoshi Suzuki; Visith Thongboonkerd; Li-Shun Wang; Jerome Zoidakis; Petra Zürbig; Joost P. Schanstra

Purpose: Urine proteomics is emerging as a powerful tool for biomarker discovery. The purpose of this study is the development of a well‐characterized “real life” sample that can be used as reference standard in urine clinical proteomics studies.


PLOS Genetics | 2011

A novel unstable duplication upstream of HAS2 predisposes to a breed-defining skin phenotype and a periodic fever syndrome in Chinese Shar-Pei dogs.

Mia Olsson; Jennifer R. S. Meadows; Katarina Truvé; Gerli Rosengren Pielberg; Francesca Puppo; Evan Mauceli; Javier Quilez; Noriko Tonomura; Giordana Zanna; María José Docampo; Anna Bassols; Anne C. Avery; Elinor K. Karlsson; Anne Thomas; Daniel L. Kastner; Erik Bongcam-Rudloff; Matthew T. Webster; Armand Sánchez; Åke Hedhammar; Elaine F. Remmers; Leif Andersson; Lluís Ferrer; Linda Tintle; Kerstin Lindblad-Toh

Hereditary periodic fever syndromes are characterized by recurrent episodes of fever and inflammation with no known pathogenic or autoimmune cause. In humans, several genes have been implicated in this group of diseases, but the majority of cases remain unexplained. A similar periodic fever syndrome is relatively frequent in the Chinese Shar-Pei breed of dogs. In the western world, Shar-Pei have been strongly selected for a distinctive thick and heavily folded skin. In this study, a mutation affecting both these traits was identified. Using genome-wide SNP analysis of Shar-Pei and other breeds, the strongest signal of a breed-specific selective sweep was located on chromosome 13. The same region also harbored the strongest genome-wide association (GWA) signal for susceptibility to the periodic fever syndrome (praw = 2.3×10−6, pgenome = 0.01). Dense targeted resequencing revealed two partially overlapping duplications, 14.3 Kb and 16.1 Kb in size, unique to Shar-Pei and upstream of the Hyaluronic Acid Synthase 2 (HAS2) gene. HAS2 encodes the rate-limiting enzyme synthesizing hyaluronan (HA), a major component of the skin. HA is up-regulated and accumulates in the thickened skin of Shar-Pei. A high copy number of the 16.1 Kb duplication was associated with an increased expression of HAS2 as well as the periodic fever syndrome (p<0.0001). When fragmented, HA can act as a trigger of the innate immune system and stimulate sterile fever and inflammation. The strong selection for the skin phenotype therefore appears to enrich for a pleiotropic mutation predisposing these dogs to a periodic fever syndrome. The identification of HA as a major risk factor for this canine disease raises the potential of this glycosaminoglycan as a risk factor for human periodic fevers and as an important driver of chronic inflammation.


Mammalian Genome | 2002

A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT.

Elisabetta Giuffra; Anna Törnsten; Stefan Marklund; Erik Bongcam-Rudloff; Patrick Chardon; James Kijas; Susan Anderson; Alan Archibald; Leif Andersson

The Dominant White (I/KIT) locus is one of the major coat color loci in the pig. Previous studies showed that the Dominant White (I) and Patch (IP) alleles are both associated with a duplication including the entire KIT coding sequence. We have now constructed a BAC contig spanning the three closely linked tyrosine kinase receptor genes PDGFRA–KIT–KDR. The size of the duplication was estimated at about 450 kb and includes KIT, but not PDGFRA and KDR. Sequence analysis revealed that the duplication arose by unequal homologous recombination between two LINE elements flanking KIT. The same unique duplication breakpoint was identified in animals carrying the I and IP alleles across breeds, implying that Dominant White and Patch alleles are descendants of a single duplication event. An unexpected finding was that Piétrain pigs carry the KIT duplication, since this breed was previously assumed to be wild type at this locus. Comparative sequence analysis indicated that the distinct phenotypic effect of the duplication occurs because the duplicated copy lacks some regulatory elements located more than 150 kb upstream of KIT exon 1 and necessary for normal KIT expression.


Standards in Genomic Sciences | 2014

Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5033

Adnan Niazi; Shahid Manzoor; Sarosh Bejai; Johan Meijer; Erik Bongcam-Rudloff

Bacillus amyloliquefaciens subsp. plantarum UCMB5033 is of special interest for its ability to promote host plant growth through production of stimulating compounds and suppression of soil borne pathogens by synthesizing antibacterial and antifungal metabolites or priming plant defense as induced systemic resistance. The genome of B. amyloliquefaciens UCMB5033 comprises a 4,071,167 bp long circular chromosome that consists of 3,912 protein-coding genes, 86 tRNA genes and 10 rRNA operons.


PLOS ONE | 2012

The Origin of the ‘Mycoplasma mycoides Cluster’ Coincides with Domestication of Ruminants

Anne Fischer; Beth Shapiro; Cecilia Muriuki; Martin Heller; Christiane Schnee; Erik Bongcam-Rudloff; Edy M. Vilei; Joachim Frey; Joerg Jores

The ‘Mycoplasma mycoides cluster’ comprises the ruminant pathogens Mycoplasma mycoides subsp. mycoides the causative agent of contagious bovine pleuropneumonia (CBPP), Mycoplasma capricolum subsp. capripneumoniae the agent of contagious caprine pleuropneumonia (CCPP), Mycoplasma capricolum subsp. capricolum, Mycoplasma leachii and Mycoplasma mycoides subsp. capri. CBPP and CCPP are major livestock diseases and impact the agricultural sector especially in developing countries through reduced food-supply and international trade restrictions. In addition, these diseases are a threat to disease-free countries. We used a multilocus sequence typing (MLST) approach to gain insights into the demographic history of and phylogenetic relationships among the members of the ‘M. mycoides cluster’. We collected partial sequences from seven housekeeping genes representing a total of 3,816 base pairs from 118 strains within this cluster, and five strains isolated from wild Caprinae. Strikingly, the origin of the ‘M. mycoides cluster’ dates to about 10,000 years ago, suggesting that the establishment and spread of the cluster coincided with livestock domestication. In addition, we show that hybridization and recombination may be important factors in the evolutionary history of the cluster.


Nucleic Acids Research | 2010

The EMBRACE web service collection

Steve Pettifer; Jon Ison; Matúš Kalaš; Dave Thorne; Philip McDermott; Inge Jonassen; Ali Liaquat; José María Fernández; Jose Manuel Rodriguez; David G. Pisano; Christophe Blanchet; Mahmut Uludag; Peter Rice; Edita Bartaseviciute; Kristoffer Rapacki; Maarten L. Hekkelman; Olivier Sand; Heinz Stockinger; Andrew B. Clegg; Erik Bongcam-Rudloff; Jean Salzemann; Vincent Breton; Teresa K. Attwood; Graham Cameron; Gert Vriend

The EMBRACE (European Model for Bioinformatics Research and Community Education) web service collection is the culmination of a 5-year project that set out to investigate issues involved in developing and deploying web services for use in the life sciences. The project concluded that in order for web services to achieve widespread adoption, standards must be defined for the choice of web service technology, for semantically annotating both service function and the data exchanged, and a mechanism for discovering services must be provided. Building on this, the project developed: EDAM, an ontology for describing life science web services; BioXSD, a schema for exchanging data between services; and a centralized registry (http://www.embraceregistry.net) that collects together around 1000 services developed by the consortium partners. This article presents the current status of the collection and its associated recommendations and standards definitions.


Insect Molecular Biology | 2007

Major ampullate spidroins from Euprosthenops australis: multiplicity at protein, mRNA and gene levels

Anna Rising; Jan Johansson; Greger Larson; Erik Bongcam-Rudloff; Wilhelm Engström; Göran Hjälm

Spider dragline silk possesses extraordinary mechanical properties. It consists of large fibrous proteins called spidroins that display modular structures. It is known to consist of two proteins: the major ampullate spidroin (MaSp) 1 and MaSp2. This study analyses MaSp sequences from the nursery‐web spider Euprosthenops australis. We have identified a previously uncharacterized MaSp2 sequence and a new MaSp‐like spidroin, which display distinct homogenous submotifs within their respective Gly‐rich repeats. Furthermore, a group of MaSp1 cDNA clones show unexpected heterogeneity. Genomic PCR identified several MaSp1 gene variants within individual spiders, which suggests the presence of a gene cluster in E. australis. Finally, the evolution of spidroin genes is discussed in relation to phylogenetic analysis of nonrepetitive C‐terminal domains from diverse species.


PLOS ONE | 2014

Genome Analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: A Rhizobacterium That Improves Plant Growth and Stress Management

Adnan Niazi; Shahid Manzoor; Shashidar Asari; Sarosh Bejai; Johan Meijer; Erik Bongcam-Rudloff

The Bacillus amyloliquefaciens subsp. plantarum strain UCMB5113 is a Gram-positive rhizobacterium that can colonize plant roots and stimulate plant growth and defense based on unknown mechanisms. This reinforcement of plants may provide protection to various forms of biotic and abiotic stress. To determine the genetic traits involved in the mechanism of plant-bacteria association, the genome sequence of UCMB5113 was obtained by assembling paired-end Illumina reads. The assembled chromosome of 3,889,532 bp was predicted to encode 3,656 proteins. Genes that potentially contribute to plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis and siderophore production were identified. Moreover, annotation identified putative genes responsible for non-ribosomal synthesis of secondary metabolites and genes supporting environment fitness of UCMB5113 including drug and metal resistance. A large number of genes encoding a diverse set of secretory proteins, enzymes of primary and secondary metabolism and carbohydrate active enzymes were found which reflect a high capacity to degrade various rhizosphere macromolecules. Additionally, many predicted membrane transporters provides the bacterium with efficient uptake capabilities of several nutrients. Although, UCMB5113 has the possibility to produce antibiotics and biosurfactants, the protective effect of plants to pathogens seems to be indirect and due to priming of plant induced systemic resistance. The availability of the genome enables identification of genes and their function underpinning beneficial interactions of UCMB5113 with plants.

Collaboration


Dive into the Erik Bongcam-Rudloff's collaboration.

Top Co-Authors

Avatar

Shahid Manzoor

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adnan Niazi

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Schnürer

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Bettina Müller

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Göran Andersson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Andreas Gisel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Klingström

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Etienne P. de Villiers

International Livestock Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge