Erik C. Cook
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik C. Cook.
PLOS Pathogens | 2013
Praveen Rao Juvvadi; Christopher Gehrke; Jarrod R. Fortwendel; Frédéric Lamoth; Erik J. Soderblom; Erik C. Cook; Michael A. Hast; Yohannes G. Asfaw; M. Arthur Moseley; Trevor P. Creamer; William J. Steinbach
The fungus Aspergillus fumigatus is a leading infectious killer in immunocompromised patients. Calcineurin, a calmodulin (CaM)-dependent protein phosphatase comprised of calcineurin A (CnaA) and calcineurin B (CnaB) subunits, localizes at the hyphal tips and septa to direct A. fumigatus invasion and virulence. Here we identified a novel serine-proline rich region (SPRR) located between two conserved CnaA domains, the CnaB-binding helix and the CaM-binding domain, that is evolutionarily conserved and unique to filamentous fungi and also completely absent in human calcineurin. Phosphopeptide enrichment and tandem mass spectrometry revealed the phosphorylation of A. fumigatus CnaA in vivo at four clustered serine residues (S406, S408, S410 and S413) in the SPRR. Mutation of the SPRR serine residues to block phosphorylation led to significant hyphal growth and virulence defects, indicating the requirement of calcineurin phosphorylation at the SPRR for its activity and function. Complementation analyses of the A. fumigatus ΔcnaA strain with cnaA homologs from the pathogenic basidiomycete Cryptococcus neoformans, the pathogenic zygomycete Mucor circinelloides, the closely related filamentous fungi Neurospora crassa, and the plant pathogen Magnaporthe grisea, revealed filamentous fungal-specific phosphorylation of CnaA in the SPRR and SPRR homology-dependent restoration of hyphal growth. Surprisingly, circular dichroism studies revealed that, despite proximity to the CaM-binding domain of CnaA, phosphorylation of the SPRR does not alter protein folding following CaM binding. Furthermore, mutational analyses in the catalytic domain, CnaB-binding helix, and the CaM-binding domains revealed that while the conserved PxIxIT substrate binding motif in CnaA is indispensable for septal localization, CaM is required for its function at the hyphal septum but not for septal localization. We defined an evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi in a region absent in humans. These findings suggest the possibility of harnessing this unique SPRR for innovative antifungal drug design to combat invasive aspergillosis.
Biochemistry | 2014
Tori B. Dunlap; Hou-Fu Guo; Erik C. Cook; Emily Holbrook; Julie Rumi-Masante; Terrence E. Lester; Christopher L. Colbert; Craig W. Vander Kooi; Trevor P. Creamer
Calcineurin is an essential serine/threonine phosphatase that plays vital roles in neuronal development and function, heart growth, and immune system activation. Calcineurin is unique in that it is the only phosphatase known to be activated by calmodulin in response to increasing intracellular calcium concentrations. Calcium-loaded calmodulin binds to the regulatory domain of calcineurin, resulting in a conformational change that removes an autoinhibitory domain from the active site of the phosphatase. We have determined a 1.95 Å crystal structure of calmodulin bound to a peptide corresponding to its binding region from calcineurin. In contrast to previous structures of this complex, our structure has a stoichiometry of 1:1 and has the canonical collapsed, wraparound conformation observed for many calmodulin-substrate complexes. In addition, we have used size-exclusion chromatography and time-resolved fluorescence to probe the stoichiometry of binding of calmodulin to a construct corresponding to almost the entire regulatory domain from calcineurin, again finding a 1:1 complex. Taken in sum, our data strongly suggest that a single calmodulin protein is necessary and sufficient to bind to and activate each calcineurin enzyme.
Biochemistry | 2013
Tori B. Dunlap; Erik C. Cook; Julie Rumi-Masante; Hannah G. Arvin; Terrence E. Lester; Trevor P. Creamer
Calcineurin (CaN) is a calmodulin-activated, serine/threonine phosphatase that is necessary for cardiac, vasculature, and nervous system development, as well as learning and memory, skeletal muscle growth, and immune system activation. CaN is activated in a manner similar to that of the calmodulin (CaM)-activated kinases. CaM binds CaNs regulatory domain (RD) and causes a conformational change that removes CaNs autoinhibitory domain (AID) from its catalytic site, activating CaN. In the CaM-activated kinases, the CaM binding region (CaMBR) is located just C-terminal to the AID, whereas in CaN, the AID is 52 residues C-terminal to the CaMBR. Previously published data have shown that these 52 residues in CaNs RD are disordered but approximately half of them gain structure, likely α-helical, upon CaM binding. In this work, we confirm that this increase in the level of structure is α-helical. We posit that this region forms an amphipathic helix upon CaM binding and folds onto the remainder of the RD:CaM complex, removing the AID. Förster resonance energy transfer data suggest the C-terminal end of this distal helix is relatively close to the N-terminal end of the CaMBR when the RD is bound by CaM. We show by circular dichroism spectroscopy and thermal melts that mutations on the hydrophobic face of the distal helix disrupt the structure gained upon CaM binding. Additionally, kinetic analysis of CaN activity suggests that these mutations affect CaNs ability to bind substrate, likely a result of the AID being able to bind to the active site even when CaM is bound. Our data demonstrate the presence of this distal helix and suggest it folds onto the remainder of the RD:CaM complex, creating a hairpinlike chain reversal that removes the AID from the active site.
Biochemistry | 2016
Erik C. Cook; Trevor P. Creamer
Calcineurin is a Ser/Thr phosphatase that is important for key biological processes, including immune system activation. We previously identified a region in the intrinsically disordered regulatory domain of calcineurin that forms a critical amphipathic α-helix (the “distal helix”) that is required for complete activation of calcineurin. This distal helix was shown to have a Tm close to that of human body temperature. Because the Tm was determined in dilute buffer, we hypothesized that other factors inherent to a cellular environment might modulate the stability of the distal helix. One such factor that contributes to stability in other proteins is macromolecular crowding. The cell cytoplasm is comprised of up to 400 g/L protein, lipids, nucleic acids, and other compounds. We hypothesize that the presence of such crowders could increase the thermal stability of the distal helix and thus lead to a more robust activation of calcineurin in vivo. Using biophysical and biochemical approaches, we show that the distal helix of calcineurin is indeed stabilized when crowded by the synthetic polymers dextran 70 and ficoll 70, and that this stabilization of the distal helix increases the activity of calcineurin.
Journal of Biological Chemistry | 2013
Andrey Frolov; Hua Dong; Min Jiang; Lihua Yang; Erik C. Cook; Rahul Matnani; Bruce D. Hammock; Leslie J. Crofford
Background: NPC2 is a protein that negatively regulates fibroblast activation. Results: NPC2-null human fibroblasts display induction of cPLA2, COX-2, and mPGES-1 expression that may contribute to the observed robust and selective activation of PGE2 biosynthesis. Conclusion: NPC2 may regulate the activated fibroblast inflammatory program through modulation of a cPLA2-dependent biosynthetic pathway. Significance: NPC2 may represent a novel therapeutic tool for the treatment of inflammatory diseases. Activated fibroblasts, also known as myofibroblasts, are mediators of several major human pathologies including proliferative fibrotic disorders, invasive tumor growth, rheumatoid arthritis, and atherosclerosis. We previously identified Niemann-Pick type C2 (NPC2) protein as a negative regulator of fibroblast activation (Csepeggi, C., Jiang, M., Kojima, F., Crofford, L. J., and Frolov, A. (2011) J. Biol. Chem. 286, 2078–2087). Here we report that NPC2-deficiency leads to a dramatic up-regulation of the arachidonic acid (AA) metabolic pathway in human fibroblasts. The major enzymes in this pathway, cPLA2 type IVA, COX-2, and mPGES-1, were dramatically up-regulated at both the transcriptional and translational levels. The specific phenotypic changes resulted in a >10-fold increase in the production and secretion of a key modulator of inflammation and immunity, prostaglandin E2. More importantly, AA metabolome profiling by liquid chromatography/tandem mass-spectrometry revealed the very specific nature of prostaglandin E2 up-regulation as the other analyzed AA metabolites derived from the COX-2, cytochrome P450, 5/15-lipoxygenase, and non-enzymatic oxidative pathways were mostly down-regulated. Blocking activity of cPLA2 efficiently suppressed expression of inflammatory cytokines, IL-1β and IL-6, thereby identifying cPLA2 as an important regulator of the inflammatory program in NPC2-null cells. Altogether, these studies highlight NPC2 as a specific regulator of AA metabolism and inflammation that suggests potential for NPC2 protein or its related signaling in the treatment of inflammatory diseases characterized by the presence of activated fibroblasts.
bioRxiv | 2018
Bin Sun; Erik C. Cook; Trevor P. Creamer; Peter M. Kekenes-Huskey
calcineurin (CaN) is a serine/threonine phosphatase that regulates a variety of physiological and pathophysiological processes in mammalian tissue. The CaN regulatory domain (RD) is responsible for regulating the enzyme’s phosphatase activity, and is believed to be highly-disordered when inhibiting CaN, but undergoes a disorderto-order transition upon diffusion-limited binding with the regulatory protein calmodulin (CaM). The prevalence of polar and charged amino acids in the regulatory domain (RD) suggests electrostatic interactions are involved in mediating CaM binding, yet the lack of atomistic-resolution data for the bound complex has stymied efforts to probe how the RD sequence controls its conformational ensemble and long-range attractions contribute to target protein binding. In the present study, we investigated via computational modeling the extent to which electrostatics and structural disorder cofacilitate or hinder CaM/CaN association kinetics. Specifically, we examined several RD constructs that contain the CaM binding region (CAMBR) to characterize the roles of electrostatics versus conformational diversity in controlling diffusion-limited association rates, via microsecond-scale molecular dynamics (MD) and Brownian dynamic (BD) simulations. Our results indicate that the RD amino acid composition and sequence length influence both the dynamic availability of conformations amenable to CaM binding, as well as long-range electrostatic interactions to steer association. These findings provide intriguing insight into the interplay between conformational diversity and electrostatically-driven protein-protein association involving CaN, which are likely to extend to wide-ranging diffusion-limited processes regulated by intrinsically-disordered proteins.
Archive | 2018
Erik C. Cook; Grace A. Usher; Scott A. Showalter
NMR spectroscopy remains the only experimental technique that provides (near) atomistic structural information for intrinsically disordered proteins (IDPs), but their sequence and structure characteristics still pose major challenges for high-resolution spectroscopy. Carbon-13 direct-detect NMR spectroscopy can overcome poor spectral dispersion and other difficulties associated with traditional 1H-detected NMR of nonaggregating disordered proteins. This chapter presents spectroscopic protocols suitable for complete characterization of IDPs that rely exclusively on 13C direct-detect experiments. The protocols described span initial characterization and chemical shift assignment; structure constraint through residual dipolar coupling and paramagnetic relaxation enhancement measurements; and assessment of intramolecular dynamics through 15N spin relaxation. The experiments described empower investigators to establish molecular mechanisms and structure-function relationships for IDPs and other proteins characterized by high internal flexibility.
Biochimica et Biophysica Acta | 2018
Bin Sun; Erik C. Cook; Trevor P. Creamer; Peter M. Kekenes-Huskey
Calcineurin (CaN) is a serine/threonine phosphatase that regulates a variety of physiological and pathophysiological processes in mammalian tissue. The calcineurin (CaN) regulatory domain (RD) is responsible for regulating the enzymes phosphatase activity, and is believed to be highly-disordered when inhibiting CaN, but undergoes a disorder-to-order transition upon diffusion-limited binding with the regulatory protein calmodulin (CaM). The prevalence of polar and charged amino acids in the regulatory domain (RD) suggests electrostatic interactions are involved in mediating calmodulin (CaM) binding, yet the lack of atomistic-resolution data for the bound complex has stymied efforts to probe how the RD sequence controls its conformational ensemble and long-range attractions contribute to target protein binding. In the present study, we investigated via computational modeling the extent to which electrostatics and structural disorder facilitate CaM/CaN association kinetics. Specifically, we examined several RD constructs that contain the CaM binding region (CAMBR) to characterize the roles of electrostatics versus conformational diversity in controlling diffusion-limited association rates, via microsecond-scale molecular dynamics (MD) and Brownian dynamic (BD) simulations. Our results indicate that the RD amino acid composition and sequence length influence both the dynamic availability of conformations amenable to CaM binding, as well as long-range electrostatic interactions to steer association. These findings provide intriguing insight into the interplay between conformational diversity and electrostatically-driven protein-protein association involving CaN, which are likely to extend to wide-ranging diffusion-limited processes regulated by intrinsically-disordered proteins.
Biochemistry | 2018
Erik C. Cook; Emily R. Featherston; Scott A. Showalter; Joseph A. Cotruvo
Lanmodulin (LanM) is a high-affinity lanthanide (Ln)-binding protein recently identified in Methylobacterium extorquens, a bacterium that requires Lns for the function of at least two enzymes. LanM possesses four EF-hands, metal coordination motifs generally associated with CaII binding, but it undergoes a metal-dependent conformational change with a 100 million-fold selectivity for LnIIIs and YIII over CaII. Here we present the nuclear magnetic resonance solution structure of LanM complexed with YIII. This structure reveals that LanM features an unusual fusion of adjacent EF-hands, resulting in a compact fold to the best of our knowledge unique among EF-hand-containing proteins. It also supports the importance of an additional carboxylate ligand in contributing to the proteins picomolar affinity for LnIIIs, and it suggests a role of unusual N i+1-H···N i hydrogen bonds, in which LanMs unique EF-hand proline residues are engaged, in selective LnIII recognition. This work sets the stage for a detailed mechanistic understanding of LanMs Ln selectivity, which may inspire new strategies for binding, detecting, and sequestering these technologically important metals.
Biomolecular Nmr Assignments | 2017
Dinesh K. Yadav; Sri Ramya Tata; John Hunt; Erik C. Cook; Trevor P. Creamer; Nicholas C. Fitzkee
Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development and nervous system function. Previous studies have demonstrated that the regulatory domain (RD) of CaN binds calmodulin (CaM) towards the N-terminal end. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the RD, although the mechanistic details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the auto-inhibitory domain (AID) from the active site of CaN, activating phosphatase activity. In the absence of calcium-loaded CaM, the RD is disordered, and binding of CaM induces folding in the RD. In order to provide mechanistic detail about the CaM–CaN interaction, we have undertaken an NMR study of the RD of CaN. Complete 13C, 15N and 1H assignments of the RD of CaN were obtained using solution NMR spectroscopy. The backbone of RD has been assigned using a combination of 13C-detected CON-IPAP experiments as well as traditional HNCO, HNCA, HNCOCA and HNCACB-based 3D NMR spectroscopy. A 15N-resolved TOCSY experiment has been used to assign Hα and Hβ chemical shifts.