Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Chorell is active.

Publication


Featured researches published by Erik Chorell.


Nature Chemical Biology | 2009

Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation

Lynette Cegelski; Jerome S. Pinkner; Neal D. Hammer; Corinne K. Cusumano; Chia S. Hung; Erik Chorell; Veronica Åberg; Jennifer N. Walker; Patrick C. Seed; Fredrik Almqvist; Matthew R. Chapman; Scott J. Hultgren

Curli are functional extracellular amyloid fibers produced by uropathogenic Escherichia coli (UPEC) and other Enterobacteriaceae. Ring-fused 2-pyridones, such as FN075 and BibC6, inhibited curli biogenesis in UPEC and prevented the in vitro polymerization of the major curli subunit protein CsgA. The curlicides FN075 and BibC6 share a common chemical lineage with other ring-fused 2-pyridones termed pilicides. Pilicides inhibit the assembly of type 1 pili, which are required for pathogenesis during urinary tract infection. Notably, the curlicides retained pilicide activities and inhibited both curli-dependent and type 1-dependent biofilms. Furthermore, pretreatment of UPEC with FN075 significantly attenuated virulence in a mouse model of urinary tract infection. Curli and type 1 pili exhibited exclusive and independent roles in promoting UPEC biofilms, and curli provided a fitness advantage in vivo. Thus, the ability of FN075 to block the biogenesis of both curli and type 1 pili endows unique anti-biofilm and anti-virulence activities on these compounds.


Journal of Medicinal Chemistry | 2010

Design and Synthesis of C-2 Substituted Thiazolo and Dihydrothiazolo Ring-Fused 2-Pyridones: Pilicides with Increased Antivirulence Activity.

Erik Chorell; Jerome S. Pinkner; Gilles Phan; Sofie Edvinsson; Floris Buelens; Han Remaut; Gabriel Waksman; Scott J. Hultgren; Fredrik Almqvist

Pilicides block pili formation by binding to pilus chaperones and blocking their function in the chaperone/usher pathway in E. coli. Various C-2 substituents were introduced on the pilicide scaffold by design and synthetic method developments. Experimental evaluation showed that proper substitution of this position affected the biological activity of the compound. Aryl substituents resulted in pilicides with significantly increased potencies as measured in pili-dependent biofilm and hemagglutination assays. The structural basis of the PapD chaperone-pilicide interactions was determined by X-ray crystallography.


Molecular Cell | 2015

The bacterial curli system possesses a potent and selective inhibitor of amyloid formation.

Margery L. Evans; Erik Chorell; Jonathan D. Taylor; Jörgen Ådén; Anna Götheson; Fei Li; Marion Koch; Lea Sefer; Steve Matthews; Pernilla Wittung-Stafshede; Fredrik Almqvist; Matthew R. Chapman

Curli are extracellular functional amyloids that are assembled by enteric bacteria during biofilm formation and host colonization. An efficient secretion system and chaperone network ensures that the major curli fiber subunit, CsgA, does not form intracellular amyloid aggregates. We discovered that the periplasmic protein CsgC was a highly effective inhibitor of CsgA amyloid formation. In the absence of CsgC, CsgA formed toxic intracellular aggregates. In vitro, CsgC inhibited CsgA amyloid formation at substoichiometric concentrations and maintained CsgA in a non-β-sheet-rich conformation. Interestingly, CsgC inhibited amyloid assembly of human α-synuclein, but not Aβ42, in vitro. We identified a common D-Q-Φ-X0,1-G-K-N-ζ-E motif in CsgC client proteins that is not found in Aβ42. CsgC is therefore both an efficient and selective amyloid inhibitor. Dedicated functional amyloid inhibitors may be a key feature that distinguishes functional amyloids from disease-associated amyloids.


Journal of the American Chemical Society | 2012

Mechanisms of protein oligomerization: Inhibitor of functional amyloids templates α-synuclein fibrillation

Istvan Horvath; Christoph Weise; Emma K. Andersson; Erik Chorell; Magnus Sellstedt; Christoffer Bengtsson; Anders Olofsson; Scott J. Hultgren; Matthew R. Chapman; Magnus Wolf-Watz; Fredrik Almqvist; Pernilla Wittung-Stafshede

Small organic molecules that inhibit functional bacterial amyloid fibers, curli, are promising new antibiotics. Here we investigated the mechanism by which the ring-fused 2-pyridone FN075 inhibits fibrillation of the curli protein CsgA. Using a variety of biophysical techniques, we found that FN075 promotes CsgA to form off-pathway, non-amyloidogenic oligomeric species. In light of the generic properties of amyloids, we tested whether FN075 would also affect the fibrillation reaction of human α-synuclein, an amyloid-forming protein involved in Parkinson’s disease. Surprisingly, FN075 stimulates α-synuclein amyloid fiber formation as measured by thioflavin T emission, electron microscopy (EM), and atomic force microscopy (AFM). NMR data on 15N-labeled α-synuclein show that upon FN075 addition, α-synuclein oligomers with 7 nm radius form in which the C-terminal 40 residues remain disordered and solvent exposed. The polypeptides in these oligomers contain β-like secondary structure, and the oligomers are detectable by AFM, EM, and size-exclusion chromatography (SEC). Taken together, FN075 triggers oligomer formation of both proteins: in the case of CsgA, the oligomers do not proceed to fibers, whereas for α-synuclein, the oligomers are poised to rapidly form fibers. We conclude that there is a fine balance between small-molecule inhibition and templation that depends on protein chemistry.


Mbio | 2014

Pilicide ec240 Disrupts Virulence Circuits in Uropathogenic Escherichia coli

Sarah E. Greene; Jerome S. Pinkner; Erik Chorell; Karen W. Dodson; Carrie L. Shaffer; Matt S. Conover; Jonathan Livny; Maria Hadjifrangiskou; Fredrik Almqvist; Scott J. Hultgren

ABSTRACT Chaperone-usher pathway (CUP) pili are extracellular organelles produced by Gram-negative bacteria that mediate bacterial pathogenesis. Small-molecule inhibitors of CUP pili, termed pilicides, were rationally designed and shown to inhibit type 1 or P piliation. Here, we show that pilicide ec240 decreased the levels of type 1, P, and S piliation. Transcriptomic and proteomic analyses using the cystitis isolate UTI89 revealed that ec240 dysregulated CUP pili and decreased motility. Paradoxically, the transcript levels of P and S pilus genes were increased during growth in ec240, even though the level of P and S piliation decreased. In contrast, the most downregulated transcripts after growth in ec240 were from the type 1 pilus genes. Type 1 pilus expression is controlled by inversion of the fimS promoter element, which can oscillate between phase on and phase off orientations. ec240 induced the fimS phase off orientation, and this effect was necessary for the majority of ec240’s inhibition of type 1 piliation. ec240 increased levels of the transcriptional regulators SfaB and PapB, which were shown to induce the fimS promoter phase off orientation. Furthermore, the effect of ec240 on motility was abolished in the absence of the SfaB, PapB, SfaX, and PapX regulators. In contrast to the effects of ec240, deletion of the type 1 pilus operon led to increased S and P piliation and motility. Thus, ec240 dysregulated several uropathogenic Escherichia coli (UPEC) virulence factors through different mechanisms and independent of its effects on type 1 pilus biogenesis and may have potential as an antivirulence compound. IMPORTANCE CUP pili and flagella play active roles in the pathogenesis of a variety of Gram-negative bacterial infections, including urinary tract infections mediated by UPEC. These are extremely common infections that are often recurrent and increasingly caused by antibiotic-resistant organisms. Preventing piliation and motility through altered regulation and assembly of these important virulence factors could aid in the development of novel therapeutics. This study increases our understanding of the regulation of these virulence factors, providing new avenues by which to target their expression. CUP pili and flagella play active roles in the pathogenesis of a variety of Gram-negative bacterial infections, including urinary tract infections mediated by UPEC. These are extremely common infections that are often recurrent and increasingly caused by antibiotic-resistant organisms. Preventing piliation and motility through altered regulation and assembly of these important virulence factors could aid in the development of novel therapeutics. This study increases our understanding of the regulation of these virulence factors, providing new avenues by which to target their expression.


Chemistry: A European Journal | 2012

Design and Synthesis of Fluorescent Pilicides and Curlicides : Bioactive Tools to Study Bacterial Virulence Mechanisms

Erik Chorell; Jerome S. Pinkner; Christoffer Bengtsson; Sofie Edvinsson; Corinne K. Cusumano; Erik Rosenbaum; Lennart B.-Å. Johansson; Scott J. Hultgren; Fredrik Almqvist

Pilicides and curlicides are compounds that block the formation of the virulence factors pili and curli, respectively. To facilitate studies of the interaction between these compounds and the pili and curli assembly systems, fluorescent pilicides and curlicides have been synthesized. This was achieved by using a strategy based on structure–activity knowledge, in which key pilicide and curlicide substituents on the ring-fused dihydrothiazolo 2-pyridone central fragment were replaced by fluorophores. Several of the resulting fluorescent compounds had improved activities as measured in pili- and curli-dependent biofilm assays. We created fluorescent pilicides and curlicides by introducing coumarin and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores at two positions on the peptidomimetic pilicide and curlicide central fragment. Fluorescence images of the uropathogenic Escherichia coli (UPEC) strain UTI89 grown in the presence of these compounds shows that the compounds are strongly associated with the bacteria with a heterogeneous distribution.


Bioorganic & Medicinal Chemistry | 2012

Mapping pilicide anti-virulence effect in Escherichia coli, a comprehensive structure–activity study

Erik Chorell; Jerome S. Pinkner; Christoffer Bengtsson; Thomas Sainte-Luce Banchelin; Sofie Edvinsson; Anna Linusson; Scott J. Hultgren; Fredrik Almqvist

Pilicides prevent pili formation and thereby the development of bacterial biofilms in Escherichia coli. We have performed a comprehensive structure activity relationship (SAR) study of the dihydrothiazolo ring-fused 2-pyridone pilicide central fragment by varying all open positions. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to distinguish active from inactive compounds in which polarity proved to be the most important factor for discrimination. A quantitative SAR (QSAR) partial least squares (PLS) model was calculated on the active compounds for prediction of biofilm inhibition activity. In this model, compounds with high inhibitory activity were generally larger, more lipophilic, more flexible and had a lower HOMO. Overall, this resulted in both highly valuable SAR information and potent inhibitors of type 1 pili dependent biofilm formation. The most potent biofilm inhibitor had an EC(50) of 400 nM.


Bioorganic & Medicinal Chemistry Letters | 2008

Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli

Veronica Åberg; Pralay Das; Erik Chorell; Mattias Hedenström; Jerome S. Pinkner; Scott J. Hultgren; Fredrik Almqvist

Ring-fused 2-pyridones, termed pilicides, are small synthetic compounds that inhibit pilus assembly in uropathogenic Escherichia coli. Their biological activity is clearly dependent upon a carboxylic acid functionality. Here, we present the synthesis and biological evaluation of carboxylic acid isosteres, including, for example, tetrazoles, acyl sulfonamides, and hydroxamic acids of two lead 2-pyridones. Two independent biological evaluations show that acyl sulfonamides and tetrazoles significantly improve pilicide activity against uropathogenic E. coli.


PLOS ONE | 2015

Bacterial Chaperones CsgE and CsgC Differentially Modulate Human α-Synuclein Amyloid Formation via Transient Contacts

Erik Chorell; Emma K. Andersson; Margery L. Evans; Neha Jain; Anna Götheson; Jörgen Ådén; Matthew R. Chapman; Fredrik Almqvist; Pernilla Wittung-Stafshede

Amyloid formation is historically associated with cytotoxicity, but many organisms produce functional amyloid fibers (e.g., curli) as a normal part of cell biology. Two E. coli genes in the curli operon encode the chaperone-like proteins CsgC and CsgE that both can reduce in vitro amyloid formation by CsgA. CsgC was also found to arrest amyloid formation of the human amyloidogenic protein α-synuclein, which is involved in Parkinson’s disease. Here, we report that the inhibitory effects of CsgC arise due to transient interactions that promote the formation of spherical α-synuclein oligomers. We find that CsgE also modulates α-synuclein amyloid formation through transient contacts but, in contrast to CsgC, CsgE accelerates α-synuclein amyloid formation. Our results demonstrate the significance of transient protein interactions in amyloid regulation and emphasize that the same protein may inhibit one type of amyloid while accelerating another.


Scientific Reports | 2015

Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner.

Sandeep Sharma; Erik Chorell; Pär Steneberg; Emma Vernersson-Lindahl; Helena Edlund; Pernilla Wittung-Stafshede

The insulin-degrading enzyme (IDE) degrades amyloidogenic proteins such as Amyloid β (Αβ) and Islet Amyloid Polypeptide (IAPP), i.e. peptides associated with Alzheimer’s disease and type 2 diabetes, respectively. In addition to the protease activity normally associated with IDE function an additional activity involving the formation of stable, irreversible complexes with both Αβ and α-synuclein, an amyloidogenic protein involved in Parkinson’s disease, was recently proposed. Here, we have investigated the functional consequences of IDE-α-synuclein interactions in vitro. We demonstrate that IDE in a nonproteolytic manner and at sub-stoichiometric ratios efficiently inhibits α-synuclein fibril formation by binding to α-synuclein oligomers making them inert to amyloid formation. Moreover, we show that, within a defined range of α-synuclein concentrations, interaction with α-synuclein oligomers increases IDE’s proteolytic activity on a fluorogenic substrate. We propose that the outcomes of IDE-α-synuclein interactions, i.e. protection against α-synuclein amyloid formation and stimulated IDE protease activity, may be protective in vivo.

Collaboration


Dive into the Erik Chorell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pernilla Wittung-Stafshede

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Scott J. Hultgren

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jerome S. Pinkner

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pralay Das

University of North Bengal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge