Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Cuevas is active.

Publication


Featured researches published by Erik Cuevas.


Expert Systems With Applications | 2013

A swarm optimization algorithm inspired in the behavior of the social-spider

Erik Cuevas; Miguel Cienfuegos; Daniel Zaldivar; Marco Pérez-Cisneros

Swarm intelligence is a research field that models the collective behavior in swarms of insects or animals. Several algorithms arising from such models have been proposed to solve a wide range of complex optimization problems. In this paper, a novel swarm algorithm called the Social Spider Optimization (SSO) is proposed for solving optimization tasks. The SSO algorithm is based on the simulation of cooperative behavior of social-spiders. In the proposed algorithm, individuals emulate a group of spiders which interact to each other based on the biological laws of the cooperative colony. The algorithm considers two different search agents (spiders): males and females. Depending on gender, each individual is conducted by a set of different evolutionary operators which mimic different cooperative behaviors that are typically found in the colony. In order to illustrate the proficiency and robustness of the proposed approach, it is compared to other well-known evolutionary methods. The comparison examines several standard benchmark functions that are commonly considered within the literature of evolutionary algorithms. The outcome shows a high performance of the proposed method for searching a global optimum with several benchmark functions.


Expert Systems With Applications | 2010

A novel multi-threshold segmentation approach based on differential evolution optimization

Erik Cuevas; Daniel Zaldivar; Marco Pérez-Cisneros

Threshold selection is a critical preprocessing step for image analysis, pattern recognition and computer vision. On the other hand differential evolution (DE) is a heuristic method for solving complex optimization problems, yielding promising results. DE is easy to use, keeps a simple structure and holds acceptable convergence properties and robustness. In this work, a novel automatic image multi-threshold approach based on differential evolution optimization is proposed. Hereby the segmentation process is considered to be similar to an optimization problem. First, the algorithm fills the 1-D histogram of the image using a mix of Gaussian functions whose parameters are calculated using the differential evolution method. Each Gaussian function approximating the histogram represents a pixel class and therefore a threshold point. The proposed approach is not only computationally efficient but also does not require prior assumptions whatsoever about the image. The method is likely to be most useful for applications considering different and perhaps initially unknown image classes. Experimental results demonstrate the algorithms ability to perform automatic threshold selection while preserving main features from the original image.


Expert Systems With Applications | 2013

A comparison of nature inspired algorithms for multi-threshold image segmentation

Valentı´n Osuna-Enciso; Erik Cuevas; Humberto Sossa

In the field of image analysis, segmentation is one of the most important preprocessing steps. One way to achieve segmentation is by mean of threshold selection, where each pixel that belongs to a determined class is labeled according to the selected threshold, giving as a result pixel groups that share visual characteristics in the image. Several methods have been proposed in order to solve threshold selection problems; in this work, it is used the method based on the mixture of Gaussian functions to approximate the 1D histogram of a gray level image and whose parameters are calculated using three nature inspired algorithms (Particle Swarm Optimization, Artificial Bee Colony Optimization and Differential Evolution). Each Gaussian function approximates the histogram, representing a pixel class and therefore a threshold point. Experimental results are shown, comparing in quantitative and qualitative fashion as well as the main advantages and drawbacks of each algorithm, applied to multi-threshold problem.


Applied Intelligence | 2012

A multi-threshold segmentation approach based on Artificial Bee Colony optimization

Erik Cuevas; Felipe Sención; Daniel Zaldivar; Marco Pérez-Cisneros; Humberto Sossa

This paper explores the use of the Artificial Bee Colony (ABC) algorithm to compute threshold selection for image segmentation. ABC is an evolutionary algorithm inspired by the intelligent behavior of honey-bees which has been successfully employed to solve complex optimization problems. In this approach, an image 1-D histogram is approximated through a Gaussian mixture model whose parameters are calculated by the ABC algorithm. In the model, each Gaussian function represents a pixel class and therefore a threshold point. Unlike the Expectation-Maximization (EM) algorithm, the ABC method shows fast convergence and low sensitivity to initial conditions. Remarkably, it also improves complex time-consuming computations commonly required by gradient-based methods. Experimental results over multiple images with different range of complexity validate the efficiency of the proposed technique with regard to segmentation accuracy, speed, and robustness. The paper also includes an experimental comparison to the EM and to one gradient-based method which ultimately demonstrates a better performance from the proposed algorithm.


Information Sciences | 2012

Circle detection using electro-magnetism optimization

Erik Cuevas; Diego Oliva; Daniel Zaldivar; Marco Pérez-Cisneros; Humberto Sossa

Nature-inspired computing has yielded remarkable applications of collective intelligence which considers simple elements for solving complex tasks by common interaction. On the other hand, automatic circle detection in digital images has been considered an important and complex task for the computer vision community that has devoted a tremendous amount of research, seeking for an optimal circle detector. This paper presents an algorithm for the automatic detection of circular shapes embedded into cluttered and noisy images without considering conventional Hough transform techniques. The approach is based on a nature-inspired technique known as the Electro-magnetism Optimization (EMO). It follows the electro-magnetism principle regarding a collective attraction-repulsion mechanism which manages particles towards an optimal solution. Each particle represents a solution by holding a charge which is related to the objective function to be optimized. The algorithm uses the encoding of three non-collinear points embedded into an edge-only image as candidate circles. Guided by the values of the objective function, the set of encoded candidate circles (charged particles) are evolved using an EMO algorithm so that they can fit into actual circular shapes over the edge-only map of the image. Experimental evidence from several tests on synthetic and natural images which provide a varying range of complexity validates the efficiency of our approach regarding accuracy, speed and robustness.


Expert Systems With Applications | 2014

A new algorithm inspired in the behavior of the social-spider for constrained optimization

Erik Cuevas; Miguel Cienfuegos

During the past decade, solving constrained optimization problems with swarm algorithms has received considerable attention among researchers and practitioners. In this paper, a novel swarm algorithm called the Social Spider Optimization (SSO-C) is proposed for solving constrained optimization tasks. The SSO-C algorithm is based on the simulation of cooperative behavior of social-spiders. In the proposed algorithm, individuals emulate a group of spiders which interact to each other based on the biological laws of the cooperative colony. The algorithm considers two different search agents (spiders): males and females. Depending on gender, each individual is conducted by a set of different evolutionary operators which mimic different cooperative behaviors that are typically found in the colony. For constraint handling, the proposed algorithm incorporates the combination of two different paradigms in order to direct the search towards feasible regions of the search space. In particular, it has been added: (1) a penalty function which introduces a tendency term into the original objective function to penalize constraint violations in order to solve a constrained problem as an unconstrained one; (2) a feasibility criterion to bias the generation of new individuals toward feasible regions increasing also their probability of getting better solutions. In order to illustrate the proficiency and robustness of the proposed approach, it is compared to other well-known evolutionary methods. Simulation and comparisons based on several well-studied benchmarks functions and real-world engineering problems demonstrate the effectiveness, efficiency and stability of the proposed method.


Applied Intelligence | 2014

An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation

Erik Cuevas; Alonso Echavarría; Marte A. Ramírez-Ortegón

The ability of an Evolutionary Algorithm (EA) to find a global optimal solution depends on its capacity to find a good rate between exploitation of found-so-far elements and exploration of the search space. Inspired by natural phenomena, researchers have developed many successful evolutionary algorithms which, at original versions, define operators that mimic the way nature solves complex problems, with no actual consideration of the exploration-exploitation balance. In this paper, a novel nature-inspired algorithm called the States of Matter Search (SMS) is introduced. The SMS algorithm is based on the simulation of the states of matter phenomenon. In SMS, individuals emulate molecules which interact to each other by using evolutionary operations which are based on the physical principles of the thermal-energy motion mechanism. The algorithm is devised by considering each state of matter at one different exploration–exploitation ratio. The evolutionary process is divided into three phases which emulate the three states of matter: gas, liquid and solid. In each state, molecules (individuals) exhibit different movement capacities. Beginning from the gas state (pure exploration), the algorithm modifies the intensities of exploration and exploitation until the solid state (pure exploitation) is reached. As a result, the approach can substantially improve the balance between exploration–exploitation, yet preserving the good search capabilities of an evolutionary approach. To illustrate the proficiency and robustness of the proposed algorithm, it is compared to other well-known evolutionary methods including novel variants that incorporate diversity preservation schemes. The comparison examines several standard benchmark functions which are commonly considered within the EA field. Experimental results show that the proposed method achieves a good performance in comparison to its counterparts as a consequence of its better exploration–exploitation balance.


Journal of Applied Mathematics | 2013

Multilevel Thresholding Segmentation Based on Harmony Search Optimization

Diego Oliva; Erik Cuevas; Gonzalo Pajares; Daniel Zaldivar; Marco Pérez-Cisneros

In this paper, a multilevel thresholding (MT) algorithm based on the harmony search algorithm (HSA) is introduced. HSA is an evolutionary method which is inspired in musicians improvising new harmonies while playing. Different to other evolutionary algorithms, HSA exhibits interesting search capabilities still keeping a low computational overhead. The proposed algorithm encodes random samples from a feasible search space inside the image histogram as candidate solutions, whereas their quality is evaluated considering the objective functions that are employed by the Otsu’s or Kapur’s methods. Guided by these objective values, the set of candidate solutions are evolved through the HSA operators until an optimal solution is found. Experimental results demonstrate the high performance of the proposed method for the segmentation of digital images.


soft computing | 2012

Multi-circle detection on images using artificial bee colony (ABC) optimization

Erik Cuevas; Felipe Sención-Echauri; Daniel Zaldivar; Marco Pérez-Cisneros

Hough transform has been the most common method for circle detection, exhibiting robustness, but adversely demanding considerable computational effort and large memory requirements. Alternative approaches include heuristic methods that employ iterative optimization procedures for detecting multiple circles. Since only one circle can be marked at each optimization cycle, multiple executions ought to be enforced in order to achieve multi-detection. This paper presents an algorithm for automatic detection of multiple circular shapes that considers the overall process as a multi-modal optimization problem. The approach is based on the artificial bee colony (ABC) algorithm, a swarm optimization algorithm inspired by the intelligent foraging behavior of honeybees. Unlike the original ABC algorithm, the proposed approach presents the addition of a memory for discarded solutions. Such memory allows holding important information regarding other local optima, which might have emerged during the optimization process. The detector uses a combination of three non-collinear edge points as parameters to determine circle candidates. A matching function (nectar-amount) determines if such circle candidates (bee-food sources) are actually present in the image. Guided by the values of such matching functions, the set of encoded candidate circles are evolved through the ABC algorithm so that the best candidate (global optimum) can be fitted into an actual circle within the edge-only image. Then, an analysis of the incorporated memory is executed in order to identify potential local optima, i.e., other circles. The proposed method is able to detect single or multiple circles from a digital image through only one optimization pass. Simulation results over several synthetic and natural images, with a varying range of complexity, validate the efficiency of the proposed technique regarding its accuracy, speed, and robustness.


Journal of Intelligent and Robotic Systems | 2012

Circle Detection by Harmony Search Optimization

Erik Cuevas; Noé Ortega-Sánchez; Daniel Zaldivar; Marco Pérez-Cisneros

Automatic circle detection in digital images has received considerable attention over the last years in computer vision as several novel efforts aim for an optimal circle detector. This paper presents an algorithm for automatic detection of circular shapes considering the overall process as an optimization problem. The approach is based on the Harmony Search Algorithm (HSA), a derivative free meta-heuristic optimization algorithm inspired by musicians improvising new harmonies while playing. The algorithm uses the encoding of three points as candidate circles (harmonies) over the edge-only image. An objective function evaluates (harmony quality) if such candidate circles are actually present in the edge image. Guided by the values of this objective function, the set of encoded candidate circles are evolved using the HSA so that they can fit into the actual circles on the edge map of the image (optimal harmony). Experimental results from several tests on synthetic and natural images with a varying complexity range have been included to validate the efficiency of the proposed technique regarding accuracy, speed and robustness.

Collaboration


Dive into the Erik Cuevas's collaboration.

Top Co-Authors

Avatar

Daniel Zaldivar

University of Guadalajara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Oliva

University of Guadalajara

View shared research outputs
Top Co-Authors

Avatar

Raúl Rojas

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Gonzalo Pajares

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvador Hinojosa

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Avalos

University of Guadalajara

View shared research outputs
Researchain Logo
Decentralizing Knowledge