Erik Donovan Hedegård
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik Donovan Hedegård.
Journal of Chemical Theory and Computation | 2011
Erik Donovan Hedegård; Jacob Kongsted; Stephan P. A. Sauer
The hyperfine coupling tensor of electron paramagnetic resonance (EPR), describing the interaction between an electron and a given nuclei, depends strongly on the electron density at the nucleus. With standard Gaussian-type orbital basis sets (GTOs), employed in most calculations, it is difficult to obtain converged results of the hyperfine coupling tensor, and basis sets with more flexible core regions have therefore been devised. To this class of core property basis sets belong the aug-cc-pVTZ-J basis sets developed for the s- and p-block atoms. Here, we extend the aug-cc-pVTZ-J basis sets to include the 3d elements Sc-Zn. The converged optimal basis sets are throughout the series described by a (25s17p10d3f2g)/[17s10p7d3f2g] contraction scheme, where four tight s-, one tight p-, and one tight d-type function have been added to the original aug-cc-pVTZ basis sets. The basis sets are generally contracted, and molecular orbital coefficients are used as contraction coefficients. By validation studies with different functionals and compounds, it is shown that the values of the contraction coefficient are effectively independent of the compound used in their generation and the exchange-correlation functional employed in the calculation.
Journal of Chemical Physics | 2015
Erik Donovan Hedegård; Stefan Knecht; Jesper Skau Kielberg; Hans Jørgen Aagaard Jensen; Markus Reiher
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Journal of Chemical Physics | 2013
Erik Donovan Hedegård; Nanna Holmgaard List; Hans Jørgen Aagaard Jensen; Jacob Kongsted
We present a detailed derivation of Multi-Configuration Self-Consistent Field (MCSCF) optimization and linear response equations within the polarizable embedding scheme: PE-MCSCF. The MCSCF model enables a proper description of multiconfigurational effects in reaction paths, spin systems, excited states, and other properties which cannot be described adequately with current implementations of polarizable embedding in density functional or coupled cluster theories. In the PE-MCSCF scheme the environment surrounding the central quantum mechanical system is represented by distributed multipole moments and anisotropic dipole-dipole polarizabilities. The PE-MCSCF model has been implemented in DALTON. As a preliminary application, the low lying valence states of acetone and uracil in water has been calculated using Complete Active Space Self-Consistent Field (CASSCF) wave functions. The dynamics of the water environment have been simulated using a series of snapshots generated from classical Molecular Dynamics. The calculated shifts from gas-phase to water display between good and excellent correlation with experiment and previous calculations. As an illustration of another area of potential applications we present calculations of electronic transitions in the transition metal complex, [Fe(NO)(CN)5](2-) in a micro-solvated environment. This system is highly multiconfigurational and the influence of solvation is significant.
Journal of Chemical Theory and Computation | 2014
Morten Nørby Pedersen; Erik Donovan Hedegård; Jógvan Magnus Haugaard Olsen; Joanna Kauczor; Patrick Norman; Jacob Kongsted
We present a combination of the polarizable embedding (PE) scheme with the complex polarization propagator (CPP) method with the aim of calculating response properties including relaxation for large and complex systems. This new approach, termed PE-CPP, will benefit from the highly advanced description of the environmental electrostatic potential and polarization in the PE method as well as the treatment of near-resonant effects in the CPP approach. The PE-CPP model has been implemented in a Kohn-Sham density functional theory approach, and we present pilot calculations exemplifying the implementation for the UV/vis and carbon K-edge X-ray absorption spectra of the protein plastocyanin. Furthermore, technical details associated with a PE-CPP calculation are discussed.
Chimia | 2016
Stefan Knecht; Erik Donovan Hedegård; Sebastian Keller; Arseny Kovyrshin; Yingjin Ma; Andrea Muolo; Christopher J. Stein; Markus Reiher
Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our new computational toolbox which implements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.
Journal of Chemical Physics | 2013
Erik Donovan Hedegård; Frank Heiden; Stefan Knecht; Emmanuel Fromager; Hans Jørgen Aagaard Jensen
Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous formulation of multi-determinantal TD-DFT schemes where excitation classes, which are absent in conventional TD-DFT spectra (like for example double excitations), can be addressed. This paper investigates the combination of both the long-range Multi-Configuration Self-Consistent Field (MCSCF) and Second Order Polarization Propagator Approximation (SOPPA) ansätze with a short-range DFT (srDFT) description. We find that the combinations of SOPPA or MCSCF with TD-DFT yield better results than could be expected from the pure wave function schemes. For the Time-Dependent MCSCF short-range DFT ansatz (TD-MC-srDFT) excitation energies calculated over a larger benchmark set of molecules with predominantly single reference character yield good agreement with their reference values, and are in general comparable to the CAM-B3LYP functional. The SOPPA-srDFT scheme is tested for a subset of molecules used for benchmarking TD-MC-srDFT and performs slightly better against the reference data for this small subset. Beyond the proof-of-principle calculations comprising the first part of this contribution, we additionally studied the low-lying singlet excited states (S1 and S2) of the retinal chromophore. The chromophore displays multireference character in the ground state and both excited states exhibit considerable double excitation character, which in turn cannot be described within standard TD-DFT, due to the adiabatic approximation. However, a TD-MC-srDFT approach can account for the multireference character, and excitation energies are obtained with accuracy comparable to CASPT2, although using a much smaller active space.
Journal of Chemical Theory and Computation | 2012
Erik Donovan Hedegård; Frank Jensen; Jacob Kongsted
Even for pure substances, the deduction of the absolute configuration is not always straightforward since there is no direct link between the magnitude and sign of the optical rotation and the absolute configuration. It would be very useful to use computations of the optical rotation to link experimentally measured optical rotations to an absolute configuration. Such electronic structure calculations of the optical rotation typically employ regular energy optimized basis sets from wave function theory, and especially the aug-cc-pVDZ basis set has been popular. Here, we have carried out extrapolation of the optical rotation to the basis set limits for nine small or medium sized molecules, using basis sets developed specifically for DFT and magnetic properties (aug-pcS-n series). We suggest that assignment of absolute configuration by comparisons between theoretical and experimental optical rotations may be improved by employing different wavelengths, and accordingly the optical rotation at two wavelengths (589.3 and 355.0 nm) has been investigated. Several fitting schemes were used to estimate the optical rotations at the basis set limit. It was found that use of the aug-cc-pVDZ basis set often leads to results that deviate significantly form the basis set limit results, especially at 355.0 nm but also at 589.3 nm. The double-ζ aug-pcS-1 basis set usually provides results which are closer to the limiting values. The basis set requirements are generally more severe at 355.0 nm, where also the aug-cc-pVTZ and 6-311++G(3fd,3dp) basis sets show significant deviations from the basis set limit results, while the aug-pcS-2 basis set always leads to results within an acceptable deviation.
Journal of Chemical Theory and Computation | 2013
Erik Donovan Hedegård; Jacob Kongsted; Stephan P. A. Sauer
This paper focuses on the calculation of the (isotropic) hyperfine coupling tensor, AisoK, which consists of the Fermi contact term (AFCK) and a spin orbit correction, the pseudocontact term (APCK). Using the aug-cc-pVTZ-J basis set, we test a range of correlation exchange functionals against experimental values for a series of first row transition metal complexes. This has been done both with (AisoK = AFCK + APCK) and without (AisoK = AFCK) spin orbit coupling included. Overall, hybrid functionals perform best, although some exceptions are found. Furthermore, we analyze molecular orbital contributions to the Fermi contact term. We find a great difference in the relative magnitude of contributions from frontier orbitals and inner or outer-core orbitals. Complexes, where the frontier orbital contribution exceeds the core-orbital contributions, are always small, ionic complexes (“class 1”). For these complexes, the computational requirements with respect to the one-electron basis set are not severe, and reg...
Journal of Chemical Theory and Computation | 2016
Mickaël Hubert; Erik Donovan Hedegård; Hans Jørgen Aa. Jensen
Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become inadequate when the molecule has near-degeneracies and/or low-lying double-excited states. To address these issues we have recently proposed multiconfiguration short-range density-functional theory-MC-srDFT-as a new tool in the toolbox. While initial applications for systems with multireference character and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC-srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2, NEVPT2, and the coupled cluster based CC2 and CC3.
Angewandte Chemie | 2015
Erik Donovan Hedegård; Jacob Kongsted; Ulf Ryde
A series of QM/MM optimizations of the full protein of [Fe] hydrogenase were performed. The FeGP cofactor has been optimized in the water-bound resting state (1), with a side-on bound dihydrogen (2), or as a hydride intermediate (3). For inclusion of H4MPT in the closed structure, advanced multiscale modeling appears to be necessary, especially to obtain reliable distances between CH-H4MPT(+) and the dihydrogen (H2) or hydride (H(-)) ligand in the FeGP cofactor. Inclusion of the full protein is further important for the relative energies of the two intermediates 2 and 3. We finally find that hydride transfer from 3 has a significantly higher barrier than found in previous studies neglecting the full protein environment.