Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik E. Cordes is active.

Publication


Featured researches published by Erik E. Cordes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

Helen K. White; Pen-Yuan Hsing; Walter Cho; Timothy M. Shank; Erik E. Cordes; Andrea M. Quattrini; Robert K. Nelson; Amanda W.J. Demopoulos; Christopher R. German; James M. Brooks; Harry H. Roberts; William Shedd; Christopher M. Reddy; Charles R. Fisher

To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.


Journal of Experimental Marine Biology and Ecology | 2003

Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps

Derk C. Bergquist; Tracy Ward; Erik E. Cordes; Tim McNelis; Sarah Howlett; Rachel Kosoff; Stéphane Hourdez; Robert S. Carney; Charles R. Fisher

Abstract Biologically generated structures create habitat and influence the distribution and abundance of species in many marine systems. In the rather monotonous and nutrient-poor environment of the deep-sea, cold seep environments and their associated chemosynthetic communities offer islands of primary production and habitat to a generally sparsely distributed macrofauna. In this study, we investigate the structure of macrofaunal assemblages associated with vestimentiferan aggregations on the upper Louisiana slope of the Gulf of Mexico and the relationships between assemblage composition and the size and complexity of the vestimentiferan-generated habitat. Using custom-designed and custom-built devices, we collected seven whole vestimentiferan aggregations along with their associated fauna during the summers of 1997 and 1998. Sixty-five species were found associated with the four vestimentiferan aggregations collected in 1998, more than doubling the number of species previously reported for seeps in this region. Individual aggregations contained between 23 and 44 different non-vestimentiferan species. General trends of increasing species richness with increasing habitat size and increasing faunal density with increasing habitat complexity were identified, but substantial variability suggested other factors also control the composition of faunal associates. Faunal abundances decreased with increasing aggregation age. Seep endemics dominated the communities of younger aggregations, but non-endemic species dominated communities of older aggregations. Relative dominance of the heterotrophic community by primary consumers decreased, while predatory secondary and higher-order consumers increased with increasing aggregation age. These trends are discussed in terms of successional changes in aggregation structure, habitat heterogeneity and environmental conditions.


PLOS Biology | 2005

Modeling the Mutualistic Interactions between Tubeworms and Microbial Consortia

Erik E. Cordes; Michael A. Arthur; Katriona Shea; Rolf S. Arvidson; Charles R. Fisher

The deep-sea vestimentiferan tubeworm Lamellibrachia luymesi forms large aggregations at hydrocarbon seeps in the Gulf of Mexico that may persist for over 250 y. Here, we present the results of a diagenetic model in which tubeworm aggregation persistence is achieved through augmentation of the supply of sulfate to hydrocarbon seep sediments. In the model, L. luymesi releases the sulfate generated by its internal, chemoautotrophic, sulfide-oxidizing symbionts through posterior root-like extensions of its body. The sulfate fuels sulfate reduction, commonly coupled to anaerobic methane oxidation and hydrocarbon degradation by bacterial–archaeal consortia. If sulfate is released by the tubeworms, sulfide generation mainly by hydrocarbon degradation is sufficient to support moderate-sized aggregations of L. luymesi for hundreds of years. The results of this model expand our concept of the potential benefits derived from complex interspecific relationships, in this case involving members of all three domains of life.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Footprint of Deepwater Horizon blowout impact to deep-water coral communities.

Charles R. Fisher; Pen-Yuan Hsing; Carl L. Kaiser; Dana R. Yoerger; Harry H. Roberts; William Shedd; Erik E. Cordes; Timothy M. Shank; Samantha P. Berlet; Miles Saunders; Elizabeth A. Larcom; James M. Brooks

Significance The Deepwater Horizon blowout released more oil and gas into the deep sea than any previous spill. Soon after the well was capped, a deep-sea community 13 km southwest of the wellhead was discovered with corals that had been damaged by the spill. Here we show this was not an isolated incident; at least two other coral communities were also impacted by the spill. One was almost twice as far from the wellhead and in 50% deeper water, considerably expanding the known area of impact. In addition, two of four other newly discovered coral communities in the region were fouled with commercial fishing line, indicating a large cumulative effect of anthropogenic activities on the corals of the deep Gulf of Mexico. On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations.


PLOS ONE | 2010

Biogeography and Potential Exchanges Among the Atlantic Equatorial Belt Cold-Seep Faunas

Karine Olu; Erik E. Cordes; Charles R. Fisher; James M. Brooks; Myriam Sibuet; Daniel Desbruyères

Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000m, with the middle slope sites either grouped with those deeper than 2000m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as “stepping stones” for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further explored to more fully test this hypothesis.


Frontiers in Marine Science | 2016

Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence

Lisa A. Levin; Amy R. Baco; David A. Bowden; Ana Colaço; Erik E. Cordes; Marina R. Cunha; Amanda W.J. Demopoulos; Judith Gobin; Benjamin M. Grupe; Jennifer T. Le; Anna Metaxas; Amanda Netburn; Greg W. Rouse; Andrew R. Thurber; Verena Tunnicliffe; Cindy Lee Van Dover; Ann Vanreusel; Les Watling

Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as regional oceanography and biodiversity. Many ecosystem services are associated with the interactions and transitions between chemosynthetic and background ecosystems, for example carbon cycling and sequestration, fisheries production, and a host of non-market and cultural services. The quantification of the sphere of influence of vents and seeps could be beneficial to better management of deep-sea environments in the face of growing industrialization.


The ISME Journal | 2009

Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells

Helen K. White; Clare E. Reimers; Erik E. Cordes; Geoffrey F Dilly; Peter R. Girguis

This study examines changes in diversity and abundance of bacteria recovered from the anodes of microbial fuel cells (MFCs) in relation to anode potential, power production and geochemistry. MFCs were batch-fed with plankton, and two systems were maintained at different potentials whereas one was at open circuit for 56.8 days. Bacterial phylogenetic diversity during peak power was assessed from 16S rDNA clone libraries. Throughout the experiment, microbial community structure was examined using terminal restriction fragment length polymorphism. Changes in cell density of key phylotypes, including representatives of δ-, ɛ-, γ-proteobacteria and Flavobacterium-Cytophaga-Bacteroides, were enumerated by quantitative PCR. Marked differences in phylogenetic diversity were observed during peak power versus the final time point, and changes in microbial community structure were strongly correlated to dissolved organic carbon and ammonium concentrations within the anode chambers. Community structure was notably different between the MFCs at different anode potentials during the onset of peak power. At the final time point, however, the anode-hosted communities in all MFCs were similar. These data demonstrate that differences in growth, succession and population dynamics of key phylotypes were due to anode potential, which may relate to their ability to exploit the anode as an electron acceptor. The geochemical milieu, however, governs overall community diversity and structure. These differences reflect the physiological capacity of specific phylotypes to catabolize plankton-derived organic matter and exploit the anode of an MFC for their metabolism directly or indirectly through syntrophy.


Frontiers in Marine Science | 2014

Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation

Jay J. Lunden; Conall G. McNicholl; Christopher R. Sears; Cheryl L. Morrison; Erik E. Cordes

Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14oC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.


Frontiers in Environmental Science | 2016

Environmental Impacts of the Deep-Water Oil and Gas Industry: A Review to Guide Management Strategies

Erik E. Cordes; Daniel O.B. Jones; Thomas A. Schlacher; Diva J. Amon; Angelo F. Bernardino; Sandra Brooke; Robert S. Carney; Danielle M. DeLeo; Katherine M. Dunlop; Elva Escobar-Briones; A.R. Gates; Luciana Génio; Judith Gobin; Lea-Anne Henry; Santiago Herrera; Sarah Hoyt; Mandy Joye; Salit Kark; Nélia C. Mestre; Anna Metaxas; Simone Pfeifer; Kerry Sink; Andrew K. Sweetman; Ursula Witte

The industrialization of the deep sea is expanding worldwide. Expanding oil and gas exploration activities in the absence of sufficient baseline data in these ecosystems has made environmental management challenging. Here, we review the types of activities that are associated with global offshore oil and gas development in water depths over 200 m, the typical impacts of these activities, some of the more extreme impacts of accidental oil and gas releases, and the current state of management in the major regions of offshore industrial activity including 18 exclusive economic zones. Direct impacts of infrastructure installation, including sediment resuspension and burial by seafloor anchors and pipelines, are typically restricted to a radius of approximately 100 m on from the installation on the seafloor. Discharges of water-based and low-toxicity oil-based drilling muds and produced water can extend over 2 km, while the ecological impacts at the population and community levels on the seafloor are most commonly on the order of 200-300 m from their source. These impacts may persist in the deep sea for many years and likely longer for its more fragile ecosystems, such as cold-water corals. This synthesis of information provides the basis for a series of recommendations for the management of offshore oil and gas development. An effective management strategy, aimed at minimizing risk of significant environmental harm, will typically encompass regulations of the activity itself (e.g. discharge practices, materials used), combined with spatial (e.g. avoidance rules and marine protected areas) and temporal measures (e.g. restricted activities during peak reproductive periods). Spatial management measures that encompass representatives of all of the regional deep-sea community types is important in this context. Implementation of these management strategies should consider minimum buffer zones to displace industrial activity beyond the range of typical impacts: at least 2 km from any discharge points and surface infrastructure and 200 m from seafloor infrastructure with no expected discharges. Although managing natural resources is, arguably, more challenging in deep-water environments, inclusion of these proven conservation tools contributes to robust environmental management strategies for oil and gas extraction in the deep sea.


Molecular Ecology | 2013

Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico.

Andrea M. Quattrini; Samuel E. Georgian; Luke Byrnes; Alex Stevens; Rosalia Falco; Erik E. Cordes

Environmental variables that are correlated with depth have been suggested to be among the major forces underlying speciation in the deep sea. This study incorporated phylogenetics and ecological niche models (ENM) to examine whether congeneric species of Callogorgia (Octocorallia: Primnoidae) occupy different ecological niches across the continental slope of the Gulf of Mexico (GoM) and whether this niche divergence could be important in the evolution of these closely related species. Callogorgia americana americana, Callogorgia americana delta and Callogorgia gracilis were documented at 13 sites in the GoM (250–1000 m) from specimen collections and extensive video observations. On a first order, these species were separated by depth, with C. gracilis occurring at the shallowest sites, C. a. americana at mid‐depths and C. a. delta at the deepest sites. Callogorgia a. delta was associated with areas of increased seep activity, whereas C. gracilis and C. a. americana were associated with narrow, yet warmer, temperature ranges and did not occur near cold seeps. ENM background and identity tests revealed little to no overlap in ecological niches between species. Temporal calibration of the phylogeny revealed the formation of the Isthmus of Panama was a vicariance event that may explain some of the patterns of speciation within this genus. These results elucidate the potential mechanisms for speciation in the deep sea, emphasizing both bathymetric speciation and vicariance events in the evolution of a genus across multiple regions.

Collaboration


Dive into the Erik E. Cordes's collaboration.

Top Co-Authors

Avatar

Charles R. Fisher

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Harry H. Roberts

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy M. Shank

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Amanda W.J. Demopoulos

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Erin L. Becker

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derk C. Bergquist

South Carolina Department of Natural Resources

View shared research outputs
Researchain Logo
Decentralizing Knowledge