Erik Garrison
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik Garrison.
Nature | 2015
Peter H. Sudmant; Tobias Rausch; Eugene J. Gardner; Robert E. Handsaker; Alexej Abyzov; John Huddleston; Zhang Y; Kai Ye; Goo Jun; Markus His Yang Fritz; Miriam K. Konkel; Ankit Malhotra; Adrian M. Stütz; Xinghua Shi; Francesco Paolo Casale; Jieming Chen; Fereydoun Hormozdiari; Gargi Dayama; Ken Chen; Maika Malig; Mark Chaisson; Klaudia Walter; Sascha Meiers; Seva Kashin; Erik Garrison; Adam Auton; Hugo Y. K. Lam; Xinmeng Jasmine Mu; Can Alkan; Danny Antaki
Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.
Science | 2013
Ekta Khurana; Yao Fu; Vincenza Colonna; Xinmeng Jasmine Mu; Hyun Min Kang; Tuuli Lappalainen; Andrea Sboner; Lucas Lochovsky; Jieming Chen; Arif Harmanci; Jishnu Das; Alexej Abyzov; Suganthi Balasubramanian; Kathryn Beal; Dimple Chakravarty; Daniel Challis; Yuan Chen; Declan Clarke; Laura Clarke; Fiona Cunningham; Uday S. Evani; Paul Flicek; Robert Fragoza; Erik Garrison; Richard A. Gibbs; Zeynep H. Gümüş; Javier Herrero; Naoki Kitabayashi; Yong Kong; Kasper Lage
Introduction Plummeting sequencing costs have led to a great increase in the number of personal genomes. Interpreting the large number of variants in them, particularly in noncoding regions, is a current challenge. This is especially the case for somatic variants in cancer genomes, a large proportion of which are noncoding. Prioritization of candidate noncoding cancer drivers based on patterns of selection. (Step 1) Filter somatic variants to exclude 1000 Genomes polymorphisms; (2) retain variants in noncoding annotations; (3) retain those in “sensitive” regions; (4) prioritize those disrupting a transcription-factor binding motif and (5) residing near the center of a biological network; (6) prioritize ones in annotation blocks mutated in multiple cancer samples. Methods We investigated patterns of selection in DNA elements from the ENCODE project using the full spectrum of variants from 1092 individuals in the 1000 Genomes Project (Phase 1), including single-nucleotide variants (SNVs), short insertions and deletions (indels), and structural variants (SVs). Although we analyzed broad functional annotations, such as all transcription-factor binding sites, we focused more on highly specific categories such as distal binding sites of factor ZNF274. The greater statistical power of the Phase 1 data set compared with earlier ones allowed us to differentiate the selective constraints on these categories. We also used connectivity information between elements from protein-protein-interaction and regulatory networks. We integrated all the information on selection to develop a workflow (FunSeq) to prioritize personal-genome variants on the basis of their deleterious impact. As a proof of principle, we experimentally validated and characterized a few candidate variants. Results We identified a specific subgroup of noncoding categories with almost as much selective constraint as coding genes: “ultrasensitive” regions. We also uncovered a number of clear patterns of selection. Elements more consistently active across tissues and both maternal and paternal alleles (in terms of allele-specific activity) are under stronger selection. Variants disruptive because of mechanistic effects on transcription-factor binding (i.e. “motif-breakers”) are selected against. Higher network connectivity (i.e. for hubs) is associated with higher constraint. Additionally, many hub promoters and regulatory elements show evidence of recent positive selection. Overall, indels and SVs follow the same pattern as SNVs; however, there are notable exceptions. For instance, enhancers are enriched for SVs formed by nonallelic homologous recombination. We integrated these patterns of selection into the FunSeq prioritization workflow and applied it to cancer variants, because they present a strong contrast to inherited polymorphisms. In particular, application to ~90 cancer genomes (breast, prostate and medulloblastoma) reveals nearly a hundred candidate noncoding drivers. Discussion Our approach can be readily used to prioritize variants in cancer and is immediately applicable in a precision-medicine context. It can be further improved by incorporation of larger-scale population sequencing, better annotations, and expression data from large cohorts. Identifying Important Identifiers Each of us has millions of sequence variations in our genomes. Signatures of purifying or negative selection should help identify which of those variations is functionally important. Khurana et al. (1235587) used sequence polymorphisms from 1092 humans across 14 populations to identify patterns of selection, especially in noncoding regulatory regions. Noncoding regions under very strong negative selection included binding sites of some chromatin and general transcription factors (TFs) and core motifs of some important TF families. Positive selection in TF binding sites tended to occur in network hub promoters. Many recurrent somatic cancer variants occurred in noncoding regulatory regions and thus might indicate mutations that drive cancer. Regions under strong selection in the human genome identify noncoding regulatory elements with possible roles in disease. Interpreting variants, especially noncoding ones, in the increasing number of personal genomes is challenging. We used patterns of polymorphisms in functionally annotated regions in 1092 humans to identify deleterious variants; then we experimentally validated candidates. We analyzed both coding and noncoding regions, with the former corroborating the latter. We found regions particularly sensitive to mutations (“ultrasensitive”) and variants that are disruptive because of mechanistic effects on transcription-factor binding (that is, “motif-breakers”). We also found variants in regions with higher network centrality tend to be deleterious. Insertions and deletions followed a similar pattern to single-nucleotide variants, with some notable exceptions (e.g., certain deletions and enhancers). On the basis of these patterns, we developed a computational tool (FunSeq), whose application to ~90 cancer genomes reveals nearly a hundred candidate noncoding drivers.
PLOS Genetics | 2011
Chip Stewart; Deniz Kural; Michael Stromberg; Jerilyn A. Walker; Miriam K. Konkel; Adrian M. Stütz; Alexander E. Urban; Fabian Grubert; Hugo Y. K. Lam; Wan Ping Lee; Michele A. Busby; Amit Indap; Erik Garrison; Chad D. Huff; Jinchuan Xing; Michael Snyder; Lynn B. Jorde; Mark A. Batzer; Jan O. Korbel; Gabor T. Marth
As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations.
PLOS ONE | 2014
Wan Ping Lee; Michael Stromberg; Alistair Ward; Chip Stewart; Erik Garrison; Gabor T. Marth
MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me).
Nature Genetics | 2016
G. David Poznik; Yali Xue; Fernando L. Mendez; Thomas Willems; Andrea Massaia; Melissa A. Wilson Sayres; Qasim Ayub; Shane McCarthy; Apurva Narechania; Seva Kashin; Yuan Chen; Ruby Banerjee; Juan L. Rodriguez-Flores; Maria Cerezo; Haojing Shao; Melissa Gymrek; Ankit Malhotra; Sandra Louzada; Rob DeSalle; Graham R. S. Ritchie; Eliza Cerveira; Tomas Fitzgerald; Erik Garrison; Anthony Marcketta; David Mittelman; Mallory Romanovitch; Chengsheng Zhang; Xiangqun Zheng-Bradley; Gonçalo R. Abecasis; Steven A. McCarroll
We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.
Nature Methods | 2015
Colby Chiang; Ryan M. Layer; Gregory G. Faust; Michael R. Lindberg; David B Rose; Erik Garrison; Gabor T. Marth; Aaron R. Quinlan; Ira M. Hall
SpeedSeq is an open-source genome analysis platform that accomplishes alignment, variant detection and functional annotation of a 50× human genome in 13 h on a low-cost server and alleviates a bioinformatics bottleneck that typically demands weeks of computation with extensive hands-on expert involvement. SpeedSeq offers performance competitive with or superior to current methods for detecting germline and somatic single-nucleotide variants, structural variants, insertions and deletions, and it includes novel functionality for streamlined interpretation.
PLOS ONE | 2013
Mengyao Zhao; Wan Ping Lee; Erik Garrison; Gabor T. Marth
Background The Smith-Waterman algorithm, which produces the optimal pairwise alignment between two sequences, is frequently used as a key component of fast heuristic read mapping and variation detection tools for next-generation sequencing data. Though various fast Smith-Waterman implementations are developed, they are either designed as monolithic protein database searching tools, which do not return detailed alignment, or are embedded into other tools. These issues make reusing these efficient Smith-Waterman implementations impractical. Results To facilitate easy integration of the fast Single-Instruction-Multiple-Data Smith-Waterman algorithm into third-party software, we wrote a C/C++ library, which extends Farrar’s Striped Smith-Waterman (SSW) to return alignment information in addition to the optimal Smith-Waterman score. In this library we developed a new method to generate the full optimal alignment results and a suboptimal score in linear space at little cost of efficiency. This improvement makes the fast Single-Instruction-Multiple-Data Smith-Waterman become really useful in genomic applications. SSW is available both as a C/C++ software library, as well as a stand-alone alignment tool at: https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library. Conclusions The SSW library has been used in the primary read mapping tool MOSAIK, the split-read mapping program SCISSORS, the MEI detector TANGRAM, and the read-overlap graph generation program RZMBLR. The speeds of the mentioned software are improved significantly by replacing their ordinary Smith-Waterman or banded Smith-Waterman module with the SSW Library.
Genome Biology | 2014
Vincenza Colonna; Qasim Ayub; Yuang Chen; Luca Pagani; Pierre Luisi; Marc Pybus; Erik Garrison; Yali Xue; Chris Tyler-Smith
BackgroundPopulation differentiation has proved to be effective for identifying loci under geographically localized positive selection, and has the potential to identify loci subject to balancing selection. We have previously investigated the pattern of genetic differentiation among human populations at 36.8 million genomic variants to identify sites in the genome showing high frequency differences. Here, we extend this dataset to include additional variants, survey sites with low levels of differentiation, and evaluate the extent to which highly differentiated sites are likely to result from selective or other processes.ResultsWe demonstrate that while sites with low differentiation represent sampling effects rather than balancing selection, sites showing extremely high population differentiation are enriched for positive selection events and that one half may be the result of classic selective sweeps. Among these, we rediscover known examples, where we actually identify the established functional SNP, and discover novel examples including the genes ABCA12, CALD1 and ZNF804, which we speculate may be linked to adaptations in skin, calcium metabolism and defense, respectively.ConclusionsWe identify known and many novel candidate regions for geographically restricted positive selection, and suggest several directions for further research.
Briefings in Bioinformatics | 2016
Tobias Marschall; Manja Marz; Thomas Abeel; Louis J. Dijkstra; Bas E. Dutilh; Ali Ghaffaari; Paul J. Kersey; Wigard P. Kloosterman; Veli Mäkinen; Adam M. Novak; Benedict Paten; David Porubsky; Eric Rivals; Can Alkan; Jasmijn A. Baaijens; Paul I. W. de Bakker; Valentina Boeva; Raoul J. P. Bonnal; Francesca Chiaromonte; Rayan Chikhi; Francesca D. Ciccarelli; Robin Cijvat; Erwin Datema; Cornelia M. van Duijn; Evan E. Eichler; Corinna Ernst; Eleazar Eskin; Erik Garrison; Mohammed El-Kebir; Gunnar W. Klau
Abstract Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains.Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains.
Genome Research | 2017
Benedict Paten; Adam M. Novak; Jordan M Eizenga; Erik Garrison
The human reference genome is part of the foundation of modern human biology and a monumental scientific achievement. However, because it excludes a great deal of common human variation, it introduces a pervasive reference bias into the field of human genomics. To reduce this bias, it makes sense to draw on representative collections of human genomes, brought together into reference cohorts. There are a number of techniques to represent and organize data gleaned from these cohorts, many using ideas implicitly or explicitly borrowed from graph-based models. Here, we survey various projects underway to build and apply these graph-based structures-which we collectively refer to as genome graphs-and discuss the improvements in read mapping, variant calling, and haplotype determination that genome graphs are expected to produce.