Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Hsiao is active.

Publication


Featured researches published by Erik Hsiao.


Biosensors and Bioelectronics | 2011

Highly stable enzyme precipitate coatings and their electrochemical applications.

Byoung Chan Kim; Xueyan Zhao; Hye Kyung Ahn; Jae Hyun Kim; Hye Jin Lee; Kyung Woo Kim; Sujith Nair; Erik Hsiao; Hongfei Jia; Min Kyu Oh; Byoung-In Sang; Beom Soo Kim; Seong H. Kim; Yongchai Kwon; Su Ha; Man Bock Gu; Ping Wang; Jungbae Kim

This paper describes highly stable enzyme precipitate coatings (EPCs) on electrospun polymer nanofibers and carbon nanotubes (CNTs), and their potential applications in the development of highly sensitive biosensors and high-powered biofuel cells. EPCs of glucose oxidase (GOx) were prepared by precipitating GOx molecules in the presence of ammonium sulfate, then cross-linking the precipitated GOx aggregates on covalently attached enzyme molecules on the surface of nanomaterials. EPCs-GOx not only improved enzyme loading, but also retained high enzyme stability. For example, EPC-GOx on CNTs showed a 50 times higher activity per unit weight of CNTs than the conventional approach of covalent attachment, and its initial activity was maintained with negligible loss for 200 days. EPC-GOx on CNTs was entrapped by Nafion to prepare enzyme electrodes for glucose sensors and biofuel cells. The EPC-GOx electrode showed a higher sensitivity and a lower detection limit than an electrode prepared with covalently attached GOx (CA-GOx). The CA-GOx electrode showed an 80% drop in sensitivity after thermal treatment at 50°C for 4 h, while the EPC-GOx electrode maintained its high sensitivity with negligible decrease under the same conditions. The use of EPC-GOx as the anode of a biofuel cell improved the power density, which was also stable even after thermal treatment of the enzyme anode at 50°C. The excellent stability of the EPC-GOx electrode together with its high current output create new potential for the practical applications of enzyme-based glucose sensors and biofuel cells.


Journal of Materials Chemistry | 2008

Fabrication of electrically-conducting nonwoven porous mats of polystyrene–polypyrrole core–shell nanofibers viaelectrospinning and vapor phase polymerization

Sujith Nair; Erik Hsiao; Seong H. Kim

This paper describes the growth of polypyrrole (PPy) layers over polystyrene (PS) nanofibers via a vapor phase polymerization process. PS nanofibers were produced through electrospinning of PS solutions containing chemical oxidants capable of polymerizing pyrrole monomers. The electrospun PS nanofibers provided a robust and stable template for growth of conducting polymer nonwoven porous mats. A mixture of tetrahydrofuran, acetone, and butanol was able to dissolve both hydrophobic PS and ionic salts (oxidants). Two chemical oxidants widely used in PPy synthesis – ferric chloride and ferric tosylate – were compared. Upon exposure to pyrrole vapor, both oxidants produced PPy conducting polymers over PS nanofibers. The ferric tosylate containing template fibers showed much faster PPy growth kinetics than the ferric chloride containing fibers. The PPy growth on ferric tosylate containing template fibers produced highly faceted fibers and gave a higher degree of crystallization of PPy than the PPy grown with ferric chloride containing templates. The intrinsic doping of PPy was slightly higher in the PPy layers grown with ferric tosylate. The combination of higher degrees of crystallization and doping resulted in a higher conductivity for PS–PPy nanofiber mats produced with ferric tosylate than those produced with ferric chloride.


ACS Applied Materials & Interfaces | 2011

One-step production of superhydrophobic coatings on flat substrates via atmospheric Rf plasma process using non-fluorinated hydrocarbons.

Seul Hee Lee; Zachary R. Dilworth; Erik Hsiao; Anna L. Barnette; Matthew J. Marino; Jeong-Hoon Kim; Jung-Gu Kang; Tae-Hwan Jung; Seong H. Kim

This paper describes the direct deposition of hydrocarbon coatings with a static water contact angle higher than 150 using simple C6 hydrocarbons as a reactive gas in helium plasma generated in ambient air without any preroughening of the silicon (100) substrate. The film morphology and hydrophobicity are found to strongly depend on the structure of the reagent hydrocarbon. The films deposited with n-hexane and cyclohexane exhibited relatively smooth morphology and the water contact angle was only ∼95°, similar to polypropylene. When benzene was used as a main reactive gas, the deposited film surface showed nanoscale textured morphology and superhydrophobicity with a water contact angle as high as 167°. Because the plasma is generated in air, all films show some degree of oxygen incorporation. These results imply that the incorporation of a small amount of oxygenated species in hydrocarbon films due to excitation of ambient air is not detrimental for superhydrophobicity, which allows the atmospheric rf plasma with the benzene precursor to produce rough surface topography needed for superhydrophobicity.


Journal of Colloid and Interface Science | 2010

Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries

Erik Hsiao; Matthew J. Marino; Seong H. Kim

This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer.


Langmuir | 2009

Effects of Ionic Side Groups Attached to Polydimethylsiloxanes on Lubrication of Silicon Oxide Surfaces

Erik Hsiao; Don Kyu Kim; Seong H. Kim

The boundary film formation and lubrication effects of low molecular weight silicone lubricant molecules with cationic side groups were studied. Poly(N,N,N-trimethylamine-3-propylmethylsiloxane-co-dimethylsiloxane) iodide was synthesized and deposited on silicon oxide surfaces to form a bound-and-mobile lubricant film. The bound nature was investigated with ellipsometry, water contact angle, and X-ray photoelectron spectroscopy for the polymers with cationic mole percent of 6, 15, and 30 mol % (monomer based). The bound layer thickness decreased as the cationic content increased. The quaternary ammonium cations in this layer were electrostatically bound to the substrate surface. The mobile nature of the multilayers was explored with scanning polarization force microscopy. The multilayer films exhibited characteristic topographic features due to ionic interactions within the polymer film. Contact scratching of these films altered the multilayer topography within the contact scanned area. Even after high load contact scanning, the bound layer was not removed from the scanned region. These results implied that the molecules in the first layer are strongly bound and the molecules in the multilayers are mobile. Both nanoscale and macroscale tribological tests of these films revealed that the polymer with 15 mol % cationic groups gives lower friction and adhesion than the 6 and 30 mol % cationic polymers as well as the polydimethylsiloxane control sample. This seems to be due to a synergistic effect between the bound and the mobile layers.


Journal of Applied Physics | 2011

Effects of adsorbate coverage and capillary on nano-asperity friction in atmosphere containing organic vapor

David B. Asay; Erik Hsiao; Seong H. Kim

The influence of alcohol adsorption on the nano-asperity friction of silicon oxide surfaces under equilibrium conditions was studied with atomic force microscopy (AFM). In the intermediate regime of the relative partial pressure (P/Psat) of alcohol, the friction versus applied load (F-L) curve deviates from the expected DMT behavior, while the F-L curve in dry and near saturation vapor conditions follows the DMT contact mechanics. The full analysis of the observed P/Psat dependence of the F-L data with theoretical models reveals clearly that the shear stress of the contact is governed by the coverage of the adsorbed alcohol on the surface while the friction near the critical snap-off is governed by the capillary meniscus formed at the nano-asperity contact.


ACS Applied Materials & Interfaces | 2011

Hydrophobic but hygroscopic polymer films--identifying interfacial species and understanding water ingress behavior.

Erik Hsiao; Anna L. Barnette; Laura C. Bradley; Seong H. Kim

The hydrophobic but hygroscopic nature of polydimethylsiloxane (PDMS) with quaternary ammonium cationic side chains adsorbed on a SiO(2) surface was investigated with sum frequency generation vibration spectroscopy (SFG) and attenuated total reflectance infrared spectroscopy (ATR-IR). PDMS with cationic side chains, named cationic polymer lubricant (CPL), forms a self-healing boundary lubrication film on SiO(2). It is interesting that CPL films are externally hydrophobic but internally hydrophilic. The comparison of SFG and ATR-IR data revealed that the methyl groups of the PDMS backbone are exposed at the film/air interface and the cationic side groups and counterions are embedded within the film. The hydrophobicity must originate from the surface CH(3) groups, while the ionic groups inside the film must be responsible for water uptake. The surface hydrophobicity can alleviate the capillary adhesion while the hygroscopic property enhances the mobility and self-healing capability of the CPL boundary lubrication film.


Langmuir | 2013

Non-contact AFM imaging in water using electrically driven cantilever vibration.

David J. Marchand; Erik Hsiao; Seong H. Kim

An atomic force microscopy (AFM) imaging mode is presented that can simultaneously record surface topography and local electrical properties in aqueous solutions without mechanical contact between the AFM tip and the sample. The interaction between the electrically biased tip and the grounded sample in aqueous medium causes the AFM cantilever to vibrate. This operation mode is based on the previously developed SPFM technique, though using water as the medium instead of air introduces some important practical and theoretical differences, and also greatly extends the applicability of this technique. There are two vibration modes, one at the frequency of the applied voltage (ω) and one at twice this frequency (2ω). The surface topography can be imaged using feedback control of the 2ω vibration amplitude, which is very sensitive to the tip-sample separation distance in the range of 1-10 nm. The amplitude and phase of the 1ω vibration can be recorded simultaneously during imaging to obtain information on local surface charge or potential differences. Similar techniques exist for imaging in air or vacuum, but the addition of a polarizable medium such as water adds significant theoretical and practical complexities. This paper addresses those complexities and demonstrates the effectiveness of the technique for surface imaging and analysis in aqueous environments.


Langmuir | 2011

Identification of Mobile Species in Cationic Polymer Lubricant Layer on Silicon Oxide from AFM and XPS Analyses

Erik Hsiao; Brandon D. Veres; Gregory J. Tudryn; Seong H. Kim

The nanoscale spreading of a cationic polymer lubricant (CPL) film consisting of polydimethylsiloxane with quaternary ammonium salt side chains on a SiO(2) surface was studied with the disjoining pressure measurements using atomic force microscopy. CPL shows a monotonic decrease in disjoining pressure as the film thickness increases from 1.3 to 4.5 nm, which suggests stable spreading in this thickness range. Comparing the spreading rates calculated from disjoining pressure and the viscosity of CLP to the self-healing time after tribo-contacts revealed that the ionic form may not be the main mobile species. The X-ray photoelectron spectroscopy analysis found that the CPL film on SiO(2) has about 30% of the quaternary ammonium salts (cationic groups) reduced to tertiary amines (neutral groups). The reduced CPL polymer has much lower viscosity than the original CPL polymer and yields a spreading rate consistent with that measured at the macroscale. Thus, the mobile component in the CPL/SiO(2) film responsible for self-healing is concluded to be the reduced tertiary amine components of CPL.


Review of Scientific Instruments | 2009

Corrected direct force balance method for atomic force microscopy lateral force calibration.

David B. Asay; Erik Hsiao; Seong H. Kim

This paper reports corrections and improvements of the previously reported direct force balance method (DFBM) developed for lateral calibration of atomic force microscopy. The DFBM method employs the lateral force signal obtained during a force-distance measurement on a sloped surface and relates this signal to the applied load and the slope of the surface to determine the lateral calibration factor. In the original publication [Rev. Sci. Instrum. 77, 043903 (2006)], the tip-substrate contact was assumed to be pinned at the point of contact, i.e., no slip along the slope. In control experiments, the tip was found to slide along the slope during force-distance curve measurement. This paper presents the correct force balance for lateral force calibration.

Collaboration


Dive into the Erik Hsiao's collaboration.

Top Co-Authors

Avatar

Seong H. Kim

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Marino

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Anna L. Barnette

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Laura C. Bradley

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sujith Nair

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Erdemir

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David B. Asay

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Osman Eryilmaz

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zachary R. Dilworth

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge