Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik I. Tellgren is active.

Publication


Featured researches published by Erik I. Tellgren.


Wiley Interdisciplinary Reviews: Computational Molecular Science | 2014

The Dalton quantum chemistry program system

Kestutis Aidas; Celestino Angeli; Keld L. Bak; Vebjørn Bakken; Radovan Bast; Linus Boman; Ove Christiansen; Renzo Cimiraglia; Sonja Coriani; Pål Dahle; Erik K. Dalskov; Ulf Ekström; Thomas Enevoldsen; Janus Juul Eriksen; Patrick Ettenhuber; Berta Fernández; Lara Ferrighi; Heike Fliegl; Luca Frediani; Kasper Hald; Asger Halkier; Christof Hättig; Hanne Heiberg; Trygve Helgaker; Alf C. Hennum; Hinne Hettema; Eirik Hjertenæs; Stine Høst; Ida Marie Høyvik; Maria Francesca Iozzi

Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.


Journal of Chemical Physics | 2007

Linear scaling implementation of molecular electronic self-consistent field theory.

Paweł Sałek; Stinne Høst; Lea Thøgersen; Poul Jørgensen; Pekka Manninen; Jeppe Olsen; Branislav Jansík; Simen Reine; Filip Pawłowski; Erik I. Tellgren; Trygve Helgaker; Sonia Coriani

A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field (SCF) theories is presented and illustrated with applications to molecules consisting of more than 1000 atoms. The diagonalization bottleneck of traditional SCF methods is avoided by carrying out a minimization of the Roothaan-Hall (RH) energy function and solving the Newton equations using the preconditioned conjugate-gradient (PCG) method. For rapid PCG convergence, the Lowdin orthogonal atomic orbital basis is used. The resulting linear-scaling trust-region Roothaan-Hall (LS-TRRH) method works by the introduction of a level-shift parameter in the RH Newton equations. A great advantage of the LS-TRRH method is that the optimal level shift can be determined at no extra cost, ensuring fast and robust convergence of both the SCF iterations and the level-shifted Newton equations. For density averaging, the authors use the trust-region density-subspace minimization (TRDSM) method, which, unlike the traditional direct inversion in the iterative subspace (DIIS) scheme, is firmly based on the principle of energy minimization. When combined with a linear-scaling evaluation of the Fock/Kohn-Sham matrix (including a boxed fitting of the electron density), LS-TRRH and TRDSM methods constitute the linear-scaling trust-region SCF (LS-TRSCF) method. The LS-TRSCF method compares favorably with the traditional SCF/DIIS scheme, converging smoothly and reliably in cases where the latter method fails. In one case where the LS-TRSCF method converges smoothly to a minimum, the SCF/DIIS method converges to a saddle point.


Science | 2012

A Paramagnetic Bonding Mechanism for Diatomics in Strong Magnetic Fields

Kai K. Lange; Erik I. Tellgren; Mark R. Hoffmann; Trygve Helgaker

Magnetically Bound At the macroscopic scale associated with daily life on Earth, magnetic attraction can seem fairly strong—think of the great loads moved by magnetized cranes. Microscopically, however, the field strengths attainable by human construction act as just a small perturbation on the Coulombic forces that bind atoms into molecules. Lange et al. (p. 327; see the Perspective by Schmelcher) used theoretical calculations to examine atomic behavior in environments very close to certain stars, where magnetic fields exceed those attainable on Earth by factors of 10,000 or more. The results predict a distinct type of chemical bonding in which spin-parallel hydrogen atoms or ground-state helium atoms are drawn together into pairs. At the enormous field strengths prevailing near stars, theory predicts a magnetically induced class of chemical bonding. Elementary chemistry distinguishes two kinds of strong bonds between atoms in molecules: the covalent bond, where bonding arises from valence electron pairs shared between neighboring atoms, and the ionic bond, where transfer of electrons from one atom to another leads to Coulombic attraction between the resulting ions. We present a third, distinct bonding mechanism: perpendicular paramagnetic bonding, generated by the stabilization of antibonding orbitals in their perpendicular orientation relative to an external magnetic field. In strong fields such as those present in the atmospheres of white dwarfs (on the order of 105 teslas) and other stellar objects, our calculations suggest that this mechanism underlies the strong bonding of H2 in the Σ3u+(1σg1σu*) triplet state and of He2 in the Σ1g+(1σg21σu*2) singlet state, as well as their preferred perpendicular orientation in the external field.


Journal of Chemical Physics | 2008

Variational and robust density fitting of four-center two-electron integrals in local metrics

Simen Reine; Erik I. Tellgren; Andreas Krapp; Thomas Kjærgaard; Trygve Helgaker; Branislav Jansík; Stinne Høst; Paweł Sałek

Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.


Journal of Chemical Physics | 2008

Nonperturbative ab initio calculations in strong magnetic fields using London orbitals

Erik I. Tellgren; Alessandro Soncini; Trygve Helgaker

A self-consistent field (SCF) London-orbital computational scheme to perform gauge-origin independent nonperturbative calculations for molecules in strong magnetic fields is presented. The crucial difference in the proposed approach with respect to common-origin finite-field SCF implementations consists in the evaluation of molecular integrals over the field-dependent molecular basis functions, which is tantamount to computing molecular integrals in a hybrid Gaussian and plane-wave basis set. The implementation of a McMurchie-Davidson scheme for the calculation of the molecular integrals over London orbitals is discussed, and preliminary applications of the newly developed code to the calculation of fourth-rank hypermagnetizabilities for a set of small molecules, benzene, and cyclobutadiene are presented. The nonperturbative approach is particularly useful for studying the highly nonlinear response of paramagnetic closed-shell systems such as boron monohydride, or the pi-electron response of cyclobutadiene.


Physical Review A | 2012

Choice of basic variables in current-density-functional theory

Erik I. Tellgren; Simen Kvaal; Espen Sagvolden; Ulf Ekström; Andrew M. Teale; Trygve Helgaker

The selection of basic variables in current-density-functional theory and formal properties of the resulting formulations are critically examined. Focus is placed on the extent to which the Hohenberg-Kohn theorem, constrained-search approach, and Lieb’s formulation (in terms of convex and concave conjugation) of standard density-functional theory can be generalized to provide foundations for current-density-functional theory. For the well-known case with the gauge-dependent paramagnetic current density as a basic variable, we find that the resulting total energy functional is not concave. It is shown that a simple redefinition of the scalar potential restores concavity and enables the application of convex analysis and convex (or concave) conjugation. As a result, the solution sets arising in potential-optimization problems can be given a simple characterization. We also review attempts to establish theories with the physical current density as a basic variable. Despite the appealing physical motivation behind this choice of basic variables, we find that the mathematical foundations of the theories proposed to date are unsatisfactory. Moreover, the analogy to standard density-functional theory is substantially weaker as neither the constrained-search approach nor the convex analysis framework carry over to a theory making use of the physical current density.


Journal of Chemical Physics | 2014

Non-perturbative calculation of molecular magnetic properties within current-density functional theory.

Erik I. Tellgren; Andrew M. Teale; James W. Furness; Kai K. Lange; Ulf Ekström; Trygve Helgaker

We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.


Journal of Chemical Physics | 2013

Non-perturbative treatment of molecules in linear magnetic fields: Calculation of anapole susceptibilities

Erik I. Tellgren; Heike Fliegl

In the present study a non-perturbative approach to ab initio calculations of molecules in strong, linearly varying, magnetic fields is developed. The use of London atomic orbitals (LAOs) for non-uniform magnetic fields is discussed and the standard rationale of gauge-origin invariance is generalized to invariance under arbitrary constant shifts of the magnetic vector potential. Our approach is applied to study magnetically induced anapole moments (or toroidal moments) and the related anapole susceptibilities for a test set of chiral and nonchiral molecules. For the first time numerical anapole moments are accessible on an ab initio level of theory. Our results show that the use of London atomic orbitals dramatically improves the basis set convergence also for magnetic properties related to non-uniform magnetic fields, at the cost that the Hellmann-Feynman theorem does not apply for a finite LAO basis set. It is shown that the mixed anapole susceptibility can be related to chirality, since its trace vanishes for an achiral molecule.


Physical Chemistry Chemical Physics | 2007

A unified scheme for the calculation of differentiated and undifferentiated molecular integrals over solid-harmonic Gaussians

Simen Reine; Erik I. Tellgren; Trygve Helgaker

Utilizing the fact that solid-harmonic combinations of Cartesian and Hermite Gaussian atomic orbitals are identical, a new scheme for the evaluation of molecular integrals over solid-harmonic atomic orbitals is presented, where the integration is carried out over Hermite rather than Cartesian atomic orbitals. Since Hermite Gaussians are defined as derivatives of spherical Gaussians, the corresponding molecular integrals become the derivatives of integrals over spherical Gaussians, whose transformation to the solid-harmonic basis is performed in the same manner as for integrals over Cartesian Gaussians, using the same expansion coefficients. The presented solid-harmonic Hermite scheme simplifies the evaluation of derivative molecular integrals, since differentiation by nuclear coordinates merely increments the Hermite quantum numbers, thereby providing a unified scheme for undifferentiated and differentiated four-center molecular integrals. For two- and three-center two-electron integrals, the solid-harmonic Hermite scheme is particularly efficient, significantly reducing the cost relative to the Cartesian scheme.


Journal of Chemical Theory and Computation | 2015

Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

James W. Furness; Joachim Verbeke; Erik I. Tellgren; Stella Stopkowicz; Ulf Ekström; Trygve Helgaker; Andrew M. Teale

We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

Collaboration


Dive into the Erik I. Tellgren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paweł Sałek

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge