Erik J. Simons
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik J. Simons.
Neurology | 2009
A. Di Fonzo; Marieke C. J. Dekker; Pasquale Montagna; A. Baruzzi; E.H. Yonova; L. Correia Guedes; A. Szczerbinska; Tianna Zhao; L.O. Dubbel-Hulsman; Cokkie H. Wouters; E. de Graaff; Wim J.G. Oyen; Erik J. Simons; Guido J. Breedveld; Ben A. Oostra; M.W.I.M. Horstink; V. Bonifati
Background: The combination of early-onset, progressive parkinsonism with pyramidal tract signs has been known as pallido-pyramidal or parkinsonian-pyramidal syndrome since the first description by Davison in 1954. Very recently, a locus was mapped in a single family with an overlapping phenotype, and an FBXO7 gene mutation was nominated as the likely disease cause. Methods: We performed clinical and genetic studies in two families with early-onset, progressive parkinsonism and pyramidal tract signs. Results: An FBXO7 homozygous truncating mutation (Arg498Stop) was found in an Italian family, while compound heterozygous mutations (a splice-site IVS7 + 1G/T mutation and a missense Thr22Met mutation) were present in a Dutch family. We also found evidence of expression of novel normal splice-variants of FBXO7. The phenotype associated with FBXO7 mutations consisted of early-onset, progressive parkinsonism and pyramidal tract signs, thereby matching clinically the pallido-pyramidal syndrome of Davison. The parkinsonism exhibits varying degrees of levodopa responsiveness in different patients. Conclusions: We conclusively show that recessive FBXO7 mutations cause progressive neurodegeneration with extrapyramidal and pyramidal system involvement, delineating a novel genetically defined entity that we propose to designate as PARK15. Understanding how FBXO7 mutations cause disease will shed further light on the molecular mechanisms of neurodegeneration, with potential implications also for more common forms of parkinsonism, such as Parkinson disease and multiple system atrophy.
Neurogenetics | 2006
Alessio Di Fonzo; Yah Huei Wu-Chou; Chin Song Lu; Marina van Doeselaar; Erik J. Simons; Christan F. Rohé; Hsiu Chen Chang; Rou Shayn Chen; Yi Hsin Weng; Nicola Vanacore; Guido J. Breedveld; Ben A. Oostra; Vincenzo Bonifati
Mutations in the LRRK2 gene are a cause of autosomal dominant Parkinson’s disease (PD). Whether LRRK2 variants influence susceptibility to the commoner, sporadic forms of PD remains largely unknown. Data are particularly limited concerning the Asian population. In search for novel, biologically relevant variants, we sequenced the LRRK2 coding region in Taiwanese patients with PD. Four newly identified variants and another variant recently found in a Taiwanese PD family were tested for association with the disease in a sample of 608 PD cases and 373 ethnically matched controls. Heterozygosity for the Gly2385Arg variant was significantly more frequent among PD patients than controls (nominal p value=0.004, corrected for multiple comparisons=0.012, gender- and age-adjusted odds ratio=2.24, 95% C.I.: 1.29–3.88); this variant was uniformly distributed across genders and age strata. Two novel variants, Met1869Val and Glu1874Stop, were found in one PD case each; their pathogenic role remains, therefore, uncertain. The remaining two novel variants (Ala419Val and Pro755Leu) were present with similar frequency in cases and controls, and were therefore, interpreted as disease-unrelated polymorphisms. Our findings suggest that the LRRK2 Gly2385Arg is the first identified, functionally relevant variant, which acts as common risk factor for sporadic PD in the population of Chinese ethnicity.
Journal of Medical Genetics | 2005
Stefano Goldwurm; A. Di Fonzo; Erik J. Simons; Christan F. Rohé; Michela Zini; Margherita Canesi; Silvana Tesei; Anna Zecchinelli; Angelo Antonini; Claudio Mariani; Nicoletta Meucci; Giorgio Sacilotto; Francesca Sironi; G Salani; Joaquim J. Ferreira; Hsin Fen Chien; Edito Fabrizio; Nicola Vanacore; A. Dalla Libera; Fabrizio Stocchi; C. Diroma; Paolo Lamberti; Cristina Sampaio; Giuseppe Meco; Egberto Reis Barbosa; Aida M. Bertoli-Avella; Guido J. Breedveld; Ben A. Oostra; Gianni Pezzoli; Vincenzo Bonifati
Background: Mutations in the gene Leucine-Rich Repeat Kinase 2 (LRRK2) were recently identified as the cause of PARK8 linked autosomal dominant Parkinson’s disease. Objective: To study recurrent LRRK2 mutations in a large sample of patients from Italy, including early (<50 years) and late onset familial and sporadic Parkinson’s disease. Results: Among 629 probands, 13 (2.1%) were heterozygous carriers of the G2019S mutation. The mutation frequency was higher among familial (5.1%, 9/177) than among sporadic probands (0.9%, 4/452) (p<0.002), and highest among probands with one affected parent (8.7%, 6/69) (p<0.001). There was no difference in the frequency of the G2019S mutation in probands with early v late onset disease. Among 600 probands, one heterozygous R1441C but no R1441G or Y1699C mutations were detected. None of the four mutations was found in Italian controls. Haplotype analysis in families from five countries suggested that the G2019S mutation originated from a single ancient founder. The G2019S mutation was associated with the classical Parkinson’s disease phenotype and a broad range of onset age (34 to 73 years). Conclusions: G2019S is the most common genetic determinant of Parkinson’s disease identified so far. It is especially frequent among cases with familial Parkinson’s disease of both early and late onset, but less common among sporadic cases. These findings have important implications for diagnosis and genetic counselling in Parkinson’s disease.
European Journal of Human Genetics | 2006
Alessio Di Fonzo; Cristina Tassorelli; Michele De Mari; Hsin F. Chien; Joaquim J. Ferreira; Christan F. Rohé; Giulio Riboldazzi; Angelo Antonini; Gianni Albani; Alessandro Mauro; Roberto Marconi; Giovanni Abbruzzese; Leonardo Lopiano; Emiliana Fincati; Marco Guidi; P. Marini; Fabrizio Stocchi; Marco Onofrj; Vincenzo Toni; Michele Tinazzi; Giovanni Fabbrini; Paolo Lamberti; Nicola Vanacore; Giuseppe Meco; Petra Leitner; Ryan J. Uitti; Zbigniew K. Wszolek; Thomas Gasser; Erik J. Simons; Guido J. Breedveld
Mutations in the gene leucine-rich repeat kinase 2 (LRRK2) have been recently identified in families with Parkinsons disease (PD). However, the prevalence and nature of LRRK2 mutations, the polymorphism content of the gene, and the associated phenotypes remain poorly understood. We performed a comprehensive study of this gene in a large sample of families with Parkinsons disease compatible with autosomal dominant inheritance (ADPD). The full-length open reading frame and splice sites of the LRRK2 gene (51 exons) were studied by genomic sequencing in 60 probands with ADPD (83% Italian). Pathogenic mutations were identified in six probands (10%): the heterozygous p.G2019S mutation in four (6.6%), and the heterozygous p.R1441C mutation in two (3.4%) probands. A further proband carried the heterozygous p.I1371 V mutation, for which a pathogenic role could not be established with certainty. In total, 13 novel disease-unrelated variants and three intronic changes of uncertain significance were also characterized. The phenotype associated with LRRK2 pathogenic mutations is the one of typical PD, but with a broad range of onset ages (mean 55.2, range 38–68 years) and, in some cases, slow disease progression. On the basis of the comprehensive study in a large sample, we conclude that pathogenic LRRK2 mutations are frequent in ADPD, and they cluster in the C-terminal half of the encoded protein. These data have implications both for understanding the molecular mechanisms of PD, and for directing the genetic screening in clinical practice.
Neurogenetics | 2008
Chin Song Lu; Yah Huei Wu-Chou; Marina van Doeselaar; Erik J. Simons; Hsiu Chen Chang; Guido J. Breedveld; Alessio Di Fonzo; Rou Shayn Chen; Yi Hsin Weng; Szu Chia Lai; Ben A. Oostra; Vincenzo Bonifati
The c.G4883C variant in the leucine-rich repeat kinase 2 (LRRK2) gene (protein effect: Arg1628Pro) has been recently proposed as a second risk factor for sporadic Parkinson’s disease in the Han Chinese population (after the Gly2385Arg variant). In this paper, we analyze the Arg1628Pro variant and the associated haplotype in a large sample of 1,337 Han subjects (834 patients and 543 controls) ascertained from a single referral center in Taiwan. In our sample, the Arg1628Pro allele was more frequent among patients (3.8%) than among controls (1.8%; p = 0.004, OR 2.13, 95% CI 1.29–3.52). Sixty heterozygous and two homozygous carriers of the Arg1628Pro variant were identified among the patients, of which only one was also a carrier of the LRRK2 Gly2385Arg variant. We also show that carriers of the Arg1628Pro variant share a common, extended haplotype, suggesting a founder effect. Parkinson’s disease onset age was similar in patients who carried the Arg1628Pro variant and in those who did not carry it. Our data support the contention that the Arg1628Pro variant is a second risk factor for Parkinson’s disease in the Han Chinese population. Adding the estimated effects of Arg1628Pro (population attributable risk [PAR] ~4%) and Gly2385Arg variants (PAR ~6%) yields a total PAR of ~10%.
Blood | 2016
Hanna IJspeert; Jacob Rozmus; Klaus Schwarz; René L. Warren; David van Zessen; Robert A. Holt; Ingrid Pico-Knijnenburg; Erik J. Simons; Isabel Jerchel; Angela Wawer; Myriam Ricarda Lorenz; Turkan Patiroglu; Himmet Haluk Akar; Ricardo Leite; Nicole S. Verkaik; Andrew Stubbs; Dik C. van Gent; Jacques J.M. van Dongen; Mirjam van der Burg
Repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining pathway (NHEJ) is important not only for repair of spontaneous breaks but also for breaks induced in developing lymphocytes during V(D)J (variable [V], diversity [D], and joining [J] genes) recombination of their antigen receptor loci to create a diverse repertoire. Mutations in the NHEJ factor XLF result in extreme sensitivity for ionizing radiation, microcephaly, and growth retardation comparable to mutations in LIG4 and XRCC4, which together form the NHEJ ligation complex. However, the effect on the immune system is variable (mild to severe immunodeficiency) and less prominent than that seen in deficiencies of NHEJ factors ARTEMIS and DNA-dependent protein kinase catalytic subunit, with defects in the hairpin opening step, which is crucial and unique for V(D)J recombination. Therefore, we aimed to study the role of XLF during V(D)J recombination. We obtained clinical data from 9 XLF-deficient patients and performed immune phenotyping and antigen receptor repertoire analysis of immunoglobulin (Ig) and T-cell receptor (TR) rearrangements, using next-generation sequencing in 6 patients. The results were compared with XRCC4 and LIG4 deficiency. Both Ig and TR rearrangements showed a significant decrease in the number of nontemplated (N) nucleotides inserted by terminal deoxynucleotidyl transferase, which resulted in a decrease of 2 to 3 amino acids in the CDR3. Such a reduction in the number of N-nucleotides has a great effect on the junctional diversity, and thereby on the total diversity of the Ig and TR repertoire. This shows that XLF has an important role during V(D)J recombination in creating diversity of the repertoire by stimulating N-nucleotide insertion.
Parkinsonism & Related Disorders | 2009
Alessio Di Fonzo; Edito Fabrizio; Astrid Thomas; Emiliana Fincati; Roberto Marconi; Michele Tinazzi; Guido J. Breedveld; Erik J. Simons; Hsin F. Chien; Joaquim J. Ferreira; M.W.I.M. Horstink; Giovanni Abbruzzese; Barbara Borroni; Giovanni Cossu; Alessio Dalla Libera; Giovanni Fabbrini; Marco Guidi; Michele De Mari; Leonardo Lopiano; Emilia Martignoni; P. Marini; Marco Onofrj; Alessandro Padovani; Fabrizio Stocchi; Vincenzo Toni; Cristina Sampaio; Egberto Reis Barbosa; Giuseppe Meco; Ben A. Oostra; Vincenzo Bonifati
Mutations in the Grb10-interacting GYF protein 2 (GIGYF2) gene, within the PARK11 locus, have been nominated as a cause of Parkinsons disease in Italian and French populations. By sequencing the whole GIGYF2 coding region in forty-six probands (thirty-seven Italians) with familial Parkinsons disease compatible with an autosomal dominant inheritance, we identified no mutations. Our data add to a growing body of evidence suggesting that GIGYF2 mutations are not a frequent cause of PD.
European Journal of Human Genetics | 2009
Ricardo Coevoets; Sermin Arican; Marianne Hoogeveen-Westerveld; Erik J. Simons; Ans van den Ouweland; Dicky Halley; Mark Nellist
Tuberous sclerosis complex (TSC) is characterised by seizures, mental retardation and the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene or the TSC2 gene. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a protein complex that inhibits signal transduction to the downstream effectors of the mammalian target of rapamycin (mTOR). We have developed a straightforward, semiautomated in-cell western (ICW) assay to investigate the effects of amino acid changes on the TSC1–TSC2-dependent inhibition of mTOR activity. Using this assay, we have characterised 20 TSC2 variants identified in individuals with TSC or suspected of having the disease. In 12 cases, we concluded that the identified variant was pathogenic. The ICW is a rapid, reproducible assay, which can be applied to the characterisation of the effects of novel TSC2 variants on the activity of the TSC1–TSC2 complex.
Parkinsonism & Related Disorders | 2015
A.J. Lewthwaite; Td Lambert; E.B. Rolfe; Simone Olgiati; Marialuisa Quadri; Erik J. Simons; Karen E. Morrison; Vincenzo Bonifati; David Nicholl
Background GTP cyclohydrolase I (GCH1) mutations are the commonest cause of Dopa-responsive dystonia (DRD). Clinical phenotypes can be broad, even within a single family. Methods We present clinical, genetic and functional imaging data on a British kindred in which affected subjects display phenotypes ranging from DRD to Parkinsons disease (PD). Twelve family members were studied. Clinical examination, dopamine transporter (DAT) imaging, and molecular genetic analysis of GCH1 and the commonest known familial PD-related genes were performed. Results We have identified a novel missense variant, c.5A > G, p.(Glu2Gly), within the GCH1 gene in affected family members displaying a range of phenotypes. Two affected subjects carrying this variant had abnormal DAT imaging. These two with abnormal DAT imaging had a PD phenotype, while the remaining three subjects with the novel GCH1 variant had normal DAT imaging and a DRD phenotype. Conclusions We propose that this GCH1 variant is pathogenic in this family and these findings suggest that similar mechanisms involving abnormal GTP cyclohydolase I may underlie both PD and DRD. GCH1 genetic testing should be considered in patients with PD and a family history of DRD.
Parkinsonism & Related Disorders | 2012
Ekaterina Yonova-Doing; Masharip Atadzhanov; Marialuisa Quadri; Paul Kelly; Nyambura Shawa; Sheila T.S. Musonda; Erik J. Simons; Guido J. Breedveld; Ben A. Oostra; Vincenzo Bonifati
Recent studies delineate substantial genetic components in Parkinsons disease (PD). However, very few studies were performed in Sub-Saharan African populations. Here, we explore the contribution of known PD-causing genes in patients of indigenous Zambian ancestry. We studied thirty-nine Zambian patients, thirty-eight with PD and one with parkinsonian-pyramidal syndrome (18% familial; average onset age 54.9 ± 12.2 years). In the whole group, all SNCA exons and LRRK2 exons 29 to 48 (encoding for important functional domains) were sequenced. In the familial patients and those with onset <55 years (n = 22) the whole LRRK2 coding region was sequenced (51 exons). In the patients with onset <50 years (n = 12), all parkin, PINK1, and DJ-1 exons were sequenced, and dosage analysis of parkin, PINK1, DJ-1, LRRK2, and SNCA was performed. Dosage analysis was also performed in the majority of the late-onset patients. The LRRK2 p.Gly2019Ser mutation was not detected. A novel LRRK2 missense variant (p.Ala1464Gly) of possible pathogenic role was found in one case. Two heterozygous, likely disease-causing deletions of parkin (exon 2 and exon 4) were detected in an early-onset case. Pathogenic mutations were not detected in SNCA, PINK1, or DJ-1. We also report variability at several single nucleotide polymorphisms in the above-mentioned genes. This is the first molecular genetic study in Zambian PD patients, and the first comprehensive analysis of the LRRK2 and SNCA genes in a Sub-Saharan population. Common disease-causing mutations were not detected, suggesting that further investigations in PD patients from these populations might unravel the role of additional, still unknown genes.