Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik J. Veneklaas is active.

Publication


Featured researches published by Erik J. Veneklaas.


Nature | 2004

The worldwide leaf economics spectrum

Ian J. Wright; Peter B. Reich; Mark Westoby; David D. Ackerly; Zdravko Baruch; Frans Bongers; Jeannine Cavender-Bares; Terry Chapin; Johannes H. C. Cornelissen; Matthias Diemer; Jaume Flexas; Eric Garnier; Philip K. Groom; J. Gulías; Kouki Hikosaka; Byron B. Lamont; Tali D. Lee; William G. Lee; Christopher H. Lusk; Jeremy J. Midgley; Marie-Laure Navas; Ülo Niinemets; Jacek Oleksyn; Noriyuki Osada; Hendrik Poorter; Pieter Poot; Lynda D. Prior; Vladimir I. Pyankov; Catherine Roumet; Sean C. Thomas

Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.


Australian Journal of Botany | 2013

New handbook for standardised measurement of plant functional traits worldwide

Natalia Pérez-Harguindeguy; Sandra Díaz; Eric Garnier; Sandra Lavorel; Hendrik Poorter; Pedro Jaureguiberry; M.S. Bret-Harte; William K. Cornwell; Joseph M. Craine; Diego E. Gurvich; Carlos Urcelay; Erik J. Veneklaas; Peter B. Reich; Lourens Poorter; Ian J. Wright; P.M. Ray; Lucas Enrico; Juli G. Pausas; A.C. De Vos; N. Buchmann; Guillermo Funes; F.F. Quétier; J. G. Hodgson; Ken Thompson; H.D. Morgan; H. ter Steege; M.G.A. Van Der Heijden; Lawren Sack; Benjamin Blonder; Peter Poschlod

Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem-level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem properties. We hope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future.


Plant and Soil | 2011

Plant and microbial strategies to improve the phosphorus efficiency of agriculture

Alan Richardson; Jonathan P. Lynch; Peter R. Ryan; Emmanuel Delhaize; F. Andrew Smith; Sally E. Smith; Paul R. Harvey; Megan H. Ryan; Erik J. Veneklaas; Hans Lambers; Astrid Oberson; Richard A. Culvenor; Richard J. Simpson

BackgroundAgricultural production is often limited by low phosphorus (P) availability. In developing countries, which have limited access to P fertiliser, there is a need to develop plants that are more efficient at low soil P. In fertilised and intensive systems, P-efficient plants are required to minimise inefficient use of P-inputs and to reduce potential for loss of P to the environment.ScopeThree strategies by which plants and microorganisms may improve P-use efficiency are outlined: (i) Root-foraging strategies that improve P acquisition by lowering the critical P requirement of plant growth and allowing agriculture to operate at lower levels of soil P; (ii) P-mining strategies to enhance the desorption, solubilisation or mineralisation of P from sparingly-available sources in soil using root exudates (organic anions, phosphatases), and (iii) improving internal P-utilisation efficiency through the use of plants that yield more per unit of P uptake.ConclusionsWe critically review evidence that more P-efficient plants can be developed by modifying root growth and architecture, through manipulation of root exudates or by managing plant-microbial associations such as arbuscular mycorrhizal fungi and microbial inoculants. Opportunities to develop P-efficient plants through breeding or genetic modification are described and issues that may limit success including potential trade-offs and trait interactions are discussed. Whilst demonstrable progress has been made by selecting plants for root morphological traits, the potential for manipulating root physiological traits or selecting plants for low internal P concentration has yet to be realised.


New Phytologist | 2012

Opportunities for improving phosphorus‐use efficiency in crop plants

Erik J. Veneklaas; Hans Lambers; Jason G. Bragg; Patrick M. Finnegan; Catherine E. Lovelock; William C. Plaxton; Charles A. Price; Wolf-Ruediger Scheible; Michael W. Shane; Philip J. White; John A. Raven

Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P-acquisition efficiency) and by improved productivity per unit P taken up (P-use efficiency). This review focuses on improved P-use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P-use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait.


Plant and Soil | 2003

Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake

Erik J. Veneklaas; Jason Stevens; Gregory R. Cawthray; Stephen Turner; Alasdair M. Grigg; Hans Lambers

Chickpea and white lupin roots are able to exude large amounts of carboxylates, but the resulting concentrations in the rhizosphere vary widely. We grew chickpea in pots in eleven different Western Australian soils, all with low phosphorus concentrations. While final plant mass varied more than two-fold and phosphorus content almost five-fold, there were only minor changes in root morphological traits that potentially enhance phosphorus uptake (e.g., the proportion of plant mass allocated to roots, or the length of roots per unit root mass). In contrast, the concentration of carboxylates (mainly malonate, citrate and malate, extracted using a 0.2 mM CaCl2 solution) varied ten-fold (averaging 2.3 μmol g−1 dry rhizosphere soil, approximately equivalent to a soil solution concentration of 23 mM). Plant phosphorus uptake was positively correlated with the concentration of carboxylates in the rhizosphere, and it was consistently higher in soils with a smaller capacity to sorb phosphorus. Phosphorus content was not correlated with bicarbonate-extractable phosphorus or any other single soil trait. These results suggest that exuded carboxylates increased the availability of phosphorus to the plant, however, the factors that affected root exudation rates are not known. When grown in the same six soils, three commonly used Western Australian chickpea cultivars had very similar rhizosphere carboxylate concentrations (extracted using a 0.2 mM CaCl2 solution), suggesting that there is little genetic variation for this trait in chickpea. Variation in the concentration of carboxylates in the rhizosphere of white lupin did not parallel that of chickpea across the six soils. However, in both species the proportion of citrate decreased and that of malate increased at lower soil pH. We conclude that patterns of variation in root exudates need to be understood to optimise the use of this trait in enhancing crop phosphorus uptake.


Plant and Soil | 2011

Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems

Richard J. Simpson; Astrid Oberson; Richard A. Culvenor; Megan H. Ryan; Erik J. Veneklaas; Hans Lambers; Jonathan P. Lynch; Peter R. Ryan; Emmanuel Delhaize; F. Andrew Smith; Sally E. Smith; Paul R. Harvey; Alan E. Richardson

Phosphorus (P)-deficiency is a significant challenge for agricultural productivity on many highly P-sorbing weathered and tropical soils throughout the world. On these soils it can be necessary to apply up to five-fold more P as fertiliser than is exported in products. Given the finite nature of global P resources, it is important that such inefficiencies be addressed. For low P-sorbing soils, P-efficient farming systems will also assist attempts to reduce pollution associated with P losses to the environment. P-balance inefficiency of farms is associated with loss of P in erosion, runoff or leaching, uneven dispersal of animal excreta, and accumulation of P as sparingly-available phosphate and organic P in the soil. In many cases it is possible to minimise P losses in runoff or erosion. Uneven dispersal of P in excreta typically amounts to ~5% of P-fertiliser inputs. However, the rate of P accumulation in moderate to highly P-sorbing soils is a major contributor to inefficient P-fertiliser use. We discuss the causal edaphic, plant and microbial factors in the context of soil P management, P cycling and productivity goals of farms. Management interventions that can alter P-use efficiency are explored, including better targeted P-fertiliser use, organic amendments, removing other constraints to yield, zone management, use of plants with low critical-P requirements, and modified farming systems. Higher productivity in low-P soils, or lower P inputs in fertilised agricultural systems can be achieved by various interventions, but it is also critically important to understand the agroecology of plant P nutrition within farming systems for improvements in P-use efficiency to be realised.


Journal of Experimental Botany | 2009

Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls

Foteini Hassiotou; Martha Ludwig; Michael Renton; Erik J. Veneklaas; John R. Evans

Leaf photosynthesis (A) is limited by mesophyll conductance (g(m)), which is influenced by both leaf structure and the environment. Previous studies have indicated that the upper bound for g(m) declines as leaf dry mass per area (LMA, an indicator of leaf structure) increases, extrapolating to zero at a LMA of about 240 g m(-2). No data exist on g(m) and its response to the environment for species with LMA values higher than 220 g m(-2). In this study, laboratory measurements of leaf gas exchange and in vivo chlorophyll a fluorescence were used concurrently to derive estimates of g(m) in seven species of the Australian sclerophyllous genus Banksia covering a wide range of LMA (130-480 g m(-2)). Irradiance and CO(2) were varied during those measurements to gauge the extent of environmental effects on g(m). A significant decrease of g(m) with increasing LMA was found. g(m) declined by 35-60% in response to increasing atmospheric CO(2) concentrations at high irradiance, with a more variable response (0-60%) observed at low irradiance, where g(m) was, on average, 22% lower than at high irradiance at ambient CO(2) concentrations. Despite considerable variation in A and LMA between the Banksia species, the CO(2) concentrations in the intercellular air spaces (C(i), 262+/-5 micromol mol(-1)) and in the chloroplasts (C(c), 127+/-4 micromol mol(-1)) were remarkably stable.


Plant Physiology | 2011

Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons to Be Learned for Future Crops?

Hans Lambers; Patrick M. Finnegan; Etienne Laliberté; Stuart J. Pearse; Megan H. Ryan; Michael W. Shane; Erik J. Veneklaas

Australia harbors some of the most nutrient-impoverished soils on Earth. Southwestern Australian soils are especially phosphorus (P) impoverished, due to the age of this ancient landscape and it being unaffected by major geological disturbance for millions of years ([Hopper, 2009][1]; [Lambers et al


Plant and Soil | 2012

Nature and nurture: the importance of seed phosphorus content

Philip J. White; Erik J. Veneklaas

BackgroundLow phytoavailability of phosphorus (P) limits crop production worldwide. Increasing seed P content can improve plant establishment and increase yields. This is thought to be a consequence of faster initial root growth, which gives seedlings earlier access to growth-limiting resources, such as water and mineral elements. It can be calculated that seed P reserves can sustain maximal growth of cereal seedlings for several weeks after germination, until the plant has three or more leaves and an extensive root system.Case studyIn this issue of Plant and Soil, Muhammad Nadeem and colleagues report (1) that measurable P uptake by roots of maize seedlings begins about 5 d after germination, (2) that the commencement of root P uptake is coincident with the transition from carbon heterotrophy to carbon autotrophy, and (3) that neither the timing nor the rate of uptake of exogenous P by the developing root system is influenced by initial seed P content.HypothesisHere it is hypothesised that the delay in P acquisition by roots of maize seedlings might be explained if the expression of genes encoding phosphate transporters is not upregulated either (1) because the plant has sufficient P for growth or (2) because a systemic signal from the shoot, which relies on photosynthesis or phloem development, is not produced, translocated or perceived.


Crop & Pasture Science | 2005

Phosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliser

Mohammad Nuruzzaman; Hans Lambers; Michael Bolland; Erik J. Veneklaas

A considerable portion of the phosphorus (P) fertilisers applied in agriculture remains in the soil as sorbed P in the forms of various P compounds, termed residual P. Certain grain legume crops may be able to mobilise residual P through root exudates, and thus increase their own growth, and potentially that of subsequent cereal crops. The first objective of this pot experiment was to compare the growth and P uptake of 3 legume crop species with that of wheat grown in a soil with different levels of residual P. Another objective was to determine whether the influence of legumes on subsequent P uptake by wheat was due to legume-induced changes in the rhizosphere, or to the presence of legume roots. White lupin (Lupinus albus L.), field pea (Pisum sativum L.), faba bean (Vicia faba L.), and wheat (Triticum aestivum L.) were grown in a soil containing 25.7, 26.4, 30.8, 39.0, or 51.9 mg/kg of bicarbonate-extractable P and sufficient amounts of nitrogen to suppress nodulation and dinitrogen fixation. Differences among the species in root dry mass were much larger than those in shoot dry mass. Faba bean produced the greatest root dry mass. All the legumes exuded carboxylates from their roots, predominantly malate, at all soil P levels. Rhizosphere concentrations of carboxylates were highest for white lupin, followed by field pea and faba bean. All of the investigated legumes enhanced the growth of the subsequently grown wheat, compared with wheat grown after wheat, even at relatively high levels of soil P. The positive effect on growth was not dependent on the incorporation of the legume roots into the soil. The legumes also caused a modest increase in wheat shoot P concentrations, which were higher when roots were incorporated into the soil. Because of the increased growth and tissue P concentrations, wheat shoot P content was 30–50% higher when grown after legumes than when grown after wheat. The study concludes that the legume crops can enhance P uptake of subsequently grown wheat, even at relatively high levels of residual P.

Collaboration


Dive into the Erik J. Veneklaas's collaboration.

Top Co-Authors

Avatar

Hans Lambers

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Pieter Poot

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Stuart J. Pearse

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Michael Renton

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Timothy D. Colmer

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Christoph Hinz

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Greg Cawthray

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Michael W. Shane

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Charles A. Price

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge