Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Jongert is active.

Publication


Featured researches published by Erik Jongert.


International Journal for Parasitology | 2008

Control of the risk of human toxoplasmosis transmitted by meat.

Aize Kijlstra; Erik Jongert

One-third of the human world population is infected with the protozoan parasite Toxoplasma gondii. Recent calculations of the disease burden of toxoplasmosis rank this foodborne disease at the same level as salmonellosis or campylobacteriosis. The high disease burden in combination with disappointing results of the currently available treatment options have led to a plea for more effective prevention. In this review we describe Toxoplasma as a hazard associated with the consumption of undercooked meat or meat products and provide an analysis of the various options to control the risk of human toxoplasmosis via this source. Monitoring and surveillance programs may be implemented for pre-harvest control of Toxoplasma infection of farm animals, with the reduction of environmental oocyst load as the most important milestone. Alternatively, Toxoplasma safe meat can be obtained through simple post-harvest decontamination procedures, whereby freezing the meat may currently be the best option, although new technologies using irradiation or high-pressure treatment may offer promising alternatives. Influence of culture, religion and food handling customs may predispose a certain type of meat as an important source of infection, indicating that prevention needs to be tailored according to social habits in different regions in the world. The rationale for more stringent control measures to prevent toxoplasmosis both from disease and economic points of view is emphasized.


Memorias Do Instituto Oswaldo Cruz | 2009

Vaccines against Toxoplasma gondii: challenges and opportunities

Erik Jongert; Craig W. Roberts; Nicola Gargano; Elisabeth Förster-Wald; Eskild Petersen

Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge.


Lancet Infectious Diseases | 2011

Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5–17 months in Kenya and Tanzania: a randomised controlled trial

Ally Olotu; John Lusingu; Amanda Leach; Marc Lievens; Johan Vekemans; Salum Msham; Trudie Lang; Jayne Gould; Marie-Claude Dubois; Erik Jongert; Preeti Vansadia; Terrell Carter; Patricia Njuguna; Ken Awuondo; Anangisye Malabeja; Omar Abdul; Samwel Gesase; Neema Mturi; Chris Drakeley; Barbara Savarese; Tonya Villafana; Didier Lapierre; W. Ripley Ballou; Joe Cohen; Martha M. Lemnge; Norbert Peshu; Kevin Marsh; Eleanor M. Riley; Lorenz von Seidlein; Philip Bejon

Summary Background RTS,S/AS01E is the lead candidate malaria vaccine. We recently showed efficacy against clinical falciparum malaria in 5–17 month old children, during an average of 8 months follow-up. We aimed to assess the efficacy of RTS,S/AS01E during 15 months of follow-up. Methods Between March, 2007, and October, 2008, we enrolled healthy children aged 5–17 months in Kilifi, Kenya, and Korogwe, Tanzania. Computer-generated block randomisation was used to randomly assign participants (1:1) to receive three doses (at month 0, 1, and 2) of either RTS,S/AS01E or human diploid-cell rabies vaccine. The primary endpoint was time to first clinical malaria episode, defined as the presence of fever (temperature ≥37·5°C) and a Plasmodium falciparum density of 2500/μL or more. Follow-up was 12 months for children from Korogwe and 15 months for children from Kilifi. Primary analysis was per protocol. In a post-hoc modelling analysis we characterised the associations between anti-circumsporozoite antibodies and protection against clinical malaria episodes. This study is registered with ClinicalTrials.gov, number NCT00380393. Findings 894 children were assigned, 447 in each treatment group. In the per-protocol analysis, 82 of 415 children in the RTS,S/AS01E group and 125 of 420 in the rabies vaccine group had first or only clinical malaria episode by 12 months, vaccine efficacy 39·2% (95% CI 19·5–54·1, p=0·0005). At 15 months follow-up, 58 of 209 children in the RTS,S/AS01E group and 85 of 206 in the rabies vaccine group had first or only clinical malaria episode, vaccine efficacy 45·8% (24·1–61·3, p=0·0004). At 12 months after the third dose, anti-circumsporozoite antibody titre data were available for 390 children in the RTS,S/AS01E group and 391 in the rabies group. A mean of 15 months (range 12–18 months) data were available for 172 children in the RTS,S/AS01E group and 155 in the rabies group. These titres at 1 month after the third dose were not associated with protection, but titres at 6·5 months were. The level of protection increased abruptly over a narrow range of antibody concentrations. The most common adverse events were pneumonia, febrile convulsion, gastroenteritis, and P falciparum malaria. Interpretation RTS,S/AS01E confers sustained efficacy for at least 15 months and shows promise as a potential public health intervention against childhood malaria in malaria endemic countries. Funding PATH Malaria Vaccine Initiative (MVI), GlaxoSmithKline.


Trends in Parasitology | 2009

Toxoplasma-safe meat: close to reality?

Aize Kijlstra; Erik Jongert

In 2008, the centennial of the discovery of Toxoplasma gondii was celebrated. However, toxoplasmosis is still seen as a neglected and underreported disease, despite having a disease burden similar to that of salmonellosis and campylobacteriosis. Human vaccines are not available and current antiparasitic treatment is disappointing. This has led to an urge to focus more on prevention. Food, soil or water contaminated with oocysts from cat faeces and undercooked meat from infected intermediate hosts are important routes of infection. Oocyst contamination is difficult to control, whereas in Western countries, the control of T. gondii in meat should be feasible. Here, we discuss strategies aimed at developing a Toxoplasma-safe meat chain.


Veterinary Parasitology | 2008

The role of rodents and shrews in the transmission of Toxoplasma gondii to pigs

Aize Kijlstra; B.G. Meerburg; J.B.W.J. Cornelissen; Stéphane De Craeye; Pieter Vereijken; Erik Jongert

Inadequate rodent control is considered to play a role in Toxoplasma gondii infection of pigs. This issue was addressed in the current study by combining a 4-month rodent control campaign and a 7-month longitudinal analysis of T. gondii seroprevalence in slaughter pigs. Three organic pig farms with known rodent infestation were included in the study. On these farms, presence of T. gondii in trapped rodents was evaluated by real-time PCR. All rodent species and shrews investigated had T. gondii DNA in brain or heart tissue. Prevalence was 10.3% in Rattus norvegicus, 6.5% in Mus musculus, 14.3% in Apodemus sylvaticus and 13.6% in Crocidura russula. Initial T. gondii seroprevalence in the slaughter pigs ranged between 8% and 17% and dropped on the three farms during the rodent control campaign to 0-10%, respectively. After 4 months of rodent control, T. gondii infection was absent from pigs from two of the three farms investigated and appeared again in one of those two farms after the rodent control campaign had stopped. This study emphasizes the role of rodents and shrews in the transmission of T. gondii to pigs and the importance of rodent control towards production of T. gondii-free pig meat.


International Journal of Pharmaceutics | 2003

Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies

Maytal Bivas-Benita; Marleen Laloup; Soetkin Versteyhe; Joelle Dewit; Jos De Braekeleer; Erik Jongert; Gerrit Borchard

Chitosan microparticles as carriers for GRA-1 protein vaccine were prepared and characterized with respect to loading efficiency and GRA-1 stability after short-term storage. Chitosan nanoparticles as carriers for GRA-1 pDNA vaccine were prepared and characterized with respect to size, zeta potential, and protection of the pDNA vaccine against degradation by DNase I. Both protein and pDNA vaccine preparations were tested with regard to their potential to elicit GRA-1-specific immune response after intragastric administration using different prime/boost regimen. The immune response was measured by determination of IgG2a and IgG1 antibody titers. It was shown that priming with GRA1 protein vaccine loaded chitosan particles and boosting with GRA1 pDNA vaccine resulted in high anti-GRA1 antibodies, characterized by a mixed IgG2a/IgG1 ratio. These results showed that oral delivery of vaccines using chitosan as a carrier material appears to be beneficial for inducing an immune response against Toxoplasma gondii. The type of immune response, however, will largely depend on the prime/boost regimen and the type of vaccine used.


Lancet Infectious Diseases | 2011

Safety and efficacy of the RTS,S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial

Kwaku Poku Asante; Salim Abdulla; Selidji Todagbe Agnandji; John Lyimo; Johan Vekemans; Solange Soulanoudjingar; Ruth Owusu; Mwanajaa Shomari; Amanda Leach; Erik Jongert; Nahya Salim; José Francisco Fernandes; David Dosoo; Maria Chikawe; Saadou Issifou; Kingsley Osei-Kwakye; Marc Lievens; Tina Möller; Stephen Apanga; Grace Mwangoka; Marie-Claude Dubois; Tigani Madi; Evans Kwara; Rose Minja; Aurore B. Hounkpatin; Owusu Boahen; Kingsley Kayan; George Adjei; Daniel Chandramohan; Terrell Carter

BACKGROUND The RTS,S/AS01(E) candidate malaria vaccine is being developed for immunisation of infants in Africa through the expanded programme on immunisation (EPI). 8 month follow-up data have been reported for safety and immunogenicity of RTS,S/AS01(E) when integrated into the EPI. We report extended follow-up to 19 months, including efficacy results. METHODS We did a randomised, open-label, phase 2 trial of safety and efficacy of the RTS,S/AS01(E) candidate malaria vaccine given with EPI vaccines between April 30, 2007, and Oct 7, 2009, in Ghana, Tanzania, and Gabon. Eligible children were 6-10 weeks of age at first vaccination, without serious acute or chronic illness. All children received the EPI diphtheria, tetanus, pertussis (inactivated whole-cell), and hepatitis-B vaccines, Haemophilus influenzae type b vaccine, and oral polio vaccine at study months 0, 1, and 2, and measles vaccine and yellow fever vaccines at study month 7. Participants were randomly assigned (1:1:1) to receive three doses of RTS,S/AS01(E) at 6, 10, and 14 weeks (0, 1, 2 month schedule) or at 6 weeks, 10 weeks, and 9 months (0, 2, 7 month schedule) or placebo. Randomisation was according to a predefined block list with a computer-generated randomisation code. Detection of serious adverse events and malaria was by passive case detection. Antibodies against Plasmodium falciparum circumsporozoite protein and HBsAg were monitored for 19 months. This study is registered with ClinicalTrials.gov, number NCT00436007. FINDINGS 511 children were enrolled. Serious adverse events occurred in 57 participants in the RTS,S/AS01(E) 0, 1, 2 month group (34%, 95% CI 27-41), 47 in the 0, 1, 7 month group (28%, 21-35), and 49 (29%, 22-36) in the control group; none were judged to be related to study vaccination. At month 19, anticircumsporozoite immune responses were significantly higher in the RTS,S/AS01(E) groups than in the control group. Vaccine efficacy for the 0, 1, 2 month schedule (2 weeks after dose three to month 19, site-adjusted according-to-protocol analysis) was 53% (95% CI 26-70; p=0·0012) against first malaria episodes and 59% (36-74; p=0·0001) against all malaria episodes. For the entire study period, (total vaccinated cohort) vaccine efficacy against all malaria episodes was higher with the 0, 1, 2 month schedule (57%, 95% CI 33-73; p=0·0002) than with the 0, 1, 7 month schedule (32% CI 16-45; p=0·0003). 1 year after dose three, vaccine efficacy against first malaria episodes was similar for both schedules (0, 1, 2 month group, 61·6% [95% CI 35·6-77·1], p<0·001; 0, 1, 7 month group, 63·8% [40·4-78·0], p<0·001, according-to-protocol cohort). INTERPRETATION Vaccine efficacy was consistent with the target put forward by the WHO-sponsored malaria vaccine technology roadmap for a first-generation malaria vaccine. The 0, 1, 2 month vaccine schedule has been selected for phase 3 candidate vaccine assessment. FUNDING Program for Appropriate Technology in Health Malaria Vaccine Initiative; GlaxoSmithKline Biologicals.


PLOS ONE | 2011

Circumsporozoite-specific T cell responses in children vaccinated with RTS,S/AS01E and protection against P falciparum clinical malaria.

Ally Olotu; Philippe Moris; Jedidah Mwacharo; Johan Vekemans; Domtila Kimani; Michel Janssens; Oscar Kai; Erik Jongert; Marc Lievens; Amanda Leach; Tonya Villafana; Barbara Savarese; Kevin Marsh; Joe Cohen; Philip Bejon

Background RTS,S/AS01E is the lead candidate pre-erythrocytic malaria vaccine. In Phase IIb field trials the safety profile was acceptable and the efficacy was 53% (95%CI 31%–72%) for protecting children against clinical malaria caused by P. falciparum. We studied CS-specific T cell responses in order to identify correlates of protection. Methods and Findings We used intracellular cytokine staining (for IL2, IFNγ, and TNFα), ex-vivo ELISPOTs (IFNγ and IL2) and IFNγ cultured ELISPOT assays to characterize the CS-specific cellular responses in 407 children (5–17 months of age) in a phase IIb randomized controlled trial of RTS,S/AS01E (NCT00380393). RTS,S/ AS01E vaccinees had higher frequencies of CS-specific CD4+ T cells producing IFNγ, TNFα or IL2 compared to control vaccinees. In a multivariable analysis TNFα+ CD4+ T cells were independently associated with a reduced risk for clinical malaria among RTS,S/AS01E vaccinees (HR = 0.64, 95%CI 0.49–0.86, p = 0.002). There was a non-significant tendency towards reduced risk among control vaccinees (HR = 0.80, 95%CI 0.62–1.03, p = 0.084), albeit with lower CS-specific T cell frequencies and higher rates of clinical malaria. When data from both RTS,S/AS01E vaccinees and control vaccinees were combined (with adjusting for vaccination group), the HR was 0.74 (95%CI 0.62–0.89, p = 0.001). After a Bonferroni correction for multiple comparisons (n-18), the finding was still significant at p = 0.018. There was no significant correlation between cultured or ex vivo ELISPOT data and protection from clinical malaria. The combination of TNFα+ CD4+ T cells and anti-CS antibody statistically accounted for the protective effect of vaccination in a Cox regression model. Conclusions RTS,S/AS01E induces CS-specific Th1 T cell responses in young children living in a malaria endemic area. The combination of anti-CS antibody concentrations titers and CS-specific TNFα+ CD4+ T cells could account for the level of protection conferred by RTS,S/AS01E. The correlation between CS-specific TNFα+ CD4+ T cells and protection needs confirmation in other datasets.


Vaccine | 2008

An enhanced GRA1-GRA7 cocktail DNA vaccine primes anti-Toxoplasma immune responses in pigs.

Erik Jongert; Vesna Melkebeek; S. De Craeye; J. Dewit; Delfien Verhelst; Eric Cox

The protozoan parasite Toxoplasma gondii is the causative agent of a worldwide zoonosis and high prevalencies can be found both in animals and humans. An important source of human contamination with T. gondii is the consumption of raw or undercooked meat products. In this study, we evaluated whether DNA vaccination against T. gondii in pigs is able to generate immune responses known to be protective against tissue cyst formation. A GRA1-GRA7 DNA vaccine cocktail was enhanced by codon optimization of the encoding antigens and addition of heat labile enterotoxin expressing vectors as genetic adjuvant. Pigs vaccinated intradermally with this enhanced GRA1-GRA7 DNA vaccine cocktail developed high antibody levels against GRA1, GRA7 and a T. gondii lysate, and lymphocyte proliferation and production of IFN-gamma could be detected in these animals after challenge with the parasite. These results indicate that pigs can be efficiently primed against T. gondii infection by means of a DNA vaccine.


Infection and Immunity | 2003

A GRA1 DNA Vaccine Primes Cytolytic CD8+ T Cells To Control Acute Toxoplasma gondii Infection

T. Scorza; S. D'Souza; M. Laloup; Joëlle Dewit; J. De Braekeleer; Hendrik Verschueren; M. Vercammen; K. Huygen; Erik Jongert

ABSTRACT Protective immunity against Toxoplasma gondii is known to be mediated mainly by T lymphocytes and gamma interferon (IFN-γ). The contribution of CD4+ and CD8+ T-lymphocyte subsets to protective immune responses against T. gondii infection, triggered by a GRA1 (p24) DNA vaccine, was assessed in this study. In vitro T-cell depletion experiments indicated that both CD4+ and CD8+ T-cell subsets produced IFN-γ upon restimulation with a T. gondii lysate. In addition, the GRA1 DNA vaccine elicited CD8+ T cells that were shown to have cytolytic activity against parasite-infected target cells and a GRA1-transfected cell line. C3H mice immunized with the GRA1 DNA vaccine showed 75 to 100% protection, while 0 to 25% of the mice immunized with the empty control vector survived challenge with T. gondii cysts. In vivo T-cell depletion experiments indicated that CD8+ T cells were essential for the survival of GRA1-vaccinated C3H mice during the acute phase of T. gondii infection, while depletion of CD4+ T cells led to an increase in brain cyst burden during the chronic phase of infection.

Collaboration


Dive into the Erik Jongert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge