Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Kjellström is active.

Publication


Featured researches published by Erik Kjellström.


Atmospheric Environment | 1996

Simulation of the tropospheric sulfur cycle in a global climate model

Johann Feichter; Erik Kjellström; Henning Rodhe; F. Dentener; J. Lelieveld; G.J. Roelofs

Abstract Emission, transport, chemistry and rainout of the sulfur species DMS, SO2 and sulfate are calculated on-line with the meteorology in a global atmospheric circulation model. The model simulates the main components of the hydrological cycle, including the liquid water content of clouds, and hence it allows an explicit treatment of cloud transformation processes and precipitation scavenging. The importance of the different oxidation pathways of DMS and SO2 is estimated. About 2 3 of the sulfate is produced within clouds, with H2O2 being the most efficient pathway (59%) and with a minor contribution due to oxidation with O3 (7%). Predicted atmospheric surface concentrations of SO2 and sulfate and the deposition fluxes are compared with the observations. Over most parts of the globe the agreement between simulated and observed annual averages is within a factor of 2. A significant underestimate of the simulated sulfate concentrations was found in high latitudes in winter. This bias may be attributed to a too slow oxidation in clouds. The calculated global mean turn-over times for DMS (2.2 d), SO2 (1.6 d) and sulfate (4.4 d) are within the range of previous estimates.


Tellus A | 2011

21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations

Erik Kjellström; Grigory Nikulin; Ulf Hansson; Gustav Strandberg; Anders Ullerstig

Seasonal mean temperature, precipitation and wind speed over Europe are analysed in an ensemble of 16 regional climate model (RCM) simulations for 1961–2100. The RCM takes boundary conditions from seven global climate models (GCMs) under four emission scenarios. One GCM was run three times under one emission scenario differing only in initial conditions. The ensemble is used to; (i) evaluate the simulated climate for 1961–1990, (ii) assess future climate change and (iii) illustrate uncertainties in future climate change related to natural variability, boundary conditions and emissions. Biases in the 1961–1990 period are strongly related to errors in the large-scale circulation in the GCMs. Significant temperature increases are seen for all of Europe already in the next decades. Precipitation increases in northern and decreases in southern Europe with a zone in between where the sign of change is uncertain. Wind speed decreases in many areas with exceptions in the northern seas and in parts of the Mediterranean in summer. Uncertainty largely depends on choice of GCM and their representation of changes in the large-scale circulation. The uncertainty related to forcing is most important by the end of the century while natural variability sometimes dominates the uncertainty in the nearest few decades.


Tellus A | 2011

Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations

Grigory Nikulin; Erik Kjellström; Ulf Hansson; Gustav Strandberg; Anders Ullerstig

Temperature, precipitation and wind extremes over Europe are examined in an ensemble of RCA3 regional climate model simulations driven by six different global climate models (ECHAM5, CCSM3, HadCM3, CNRM, BCM and IPSL) under the SRES A1B emission scenario. The extremes are expressed in terms of the 20-yr return values of annual temperature and wind extremes and seasonal precipitation extremes. The ensemble shows reduction of recurrence time of warm extremes from 20 yr in 1961–1990 (CTL) to 1–2 yr over southern Europe and to 5 yr over Scandinavia in 2071–2100 (SCN) while cold extremes, defined for CTL, almost disappear in the future. The recurrence time of intense precipitation reduces from 20 yr in CTL to 6–10 yr in SCN over northern and central Europe in summer and even more to 2–4 yr in Scandinavia in winter. The projected changes in wind extremes have a large spread among the six simulations with a disperse tendency (1–2 m s−1) of strengthening north of 45◦N and weakening south of it which is sensitive to the number of simulations in the ensemble. Changes in temperature extremes are more robust compared to those in precipitation extremes while there is less confidence on changes in wind extremes.


Tellus B | 2001

A comparison of large-scale atmospheric sulphate aerosol models (COSAM): overview and highlights

L. A. Barrie; Y. Yi; W. R. Leaitch; Ulrike Lohmann; Prasad S. Kasibhatla; G. J. Roelofs; J. C. Wilson; F. McGovern; Carmen M. Benkovitz; M. A. Méliéres; Kathy S. Law; Joseph M. Prospero; Mark A. Kritz; D. Bergmann; C. Bridgeman; M. Chin; Jesper Christensen; Richard C. Easter; Johann Feichter; C. Land; A. Jeuken; Erik Kjellström; D. Koch; Philip J. Rasch

The comparison of large-scale sulphate aerosol models study (COSAM) compared the performance of atmospheric models with each other and observations. It involved: (i) design of a standard model experiment for the world wide web, (ii) 10 model simulations of the cycles of sulphur and 222Rn/210Pb conforming to the experimental design, (iii) assemblage of the best available observations of atmospheric SO=4, SO2 and MSA and (iv) a workshop in Halifax, Canada to analyze model performance and future model development needs. The analysis presented in this paper and two companion papers by Roelofs, and Lohmann and co-workers examines the variance between models and observations, discusses the sources of that variance and suggests ways to improve models. Variations between models in the export of SOx from Europe or North America are not sufficient to explain an order of magnitude variation in spatial distributions of SOx downwind in the northern hemisphere. On average, models predicted surface level seasonal mean SO=4 aerosol mixing ratios better (most within 20%) than SO2 mixing ratios (over-prediction by factors of 2 or more). Results suggest that vertical mixing from the planetary boundary layer into the free troposphere in source regions is a major source of uncertainty in predicting the global distribution of SO=4 aerosols in climate models today. For improvement, it is essential that globally coordinated research efforts continue to address emissions of all atmospheric species that affect the distribution and optical properties of ambient aerosols in models and that a global network of observations be established that will ultimately produce a world aerosol chemistry climatology.


Environmental Research Letters | 2014

The European climate under a 2 °C global warming

Robert Vautard; Andreas Gobiet; Stefan Sobolowski; Erik Kjellström; Annemiek I. Stegehuis; Paul Watkiss; Thomas Mendlik; Oskar Landgren; Grigory Nikulin; Claas Teichmann; Daniela Jacob

A global warming of 2 C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresponding to 2 C global warming, describe the range of projected changes for the European climate for this level of global warming, and investigate the uncertainty across the multi-model ensemble. Robust changes in mean and extreme temperature, precipitation, winds and surface energy budgets are found based on the ensemble of simulations. The results indicate that most of Europe will experience higher warming than the global average. They also reveal strong distributional patterns across Europe, which will be important in subsequent impact assessments and adaptation responses in different countries and regions. For instance, a North‐South (West‐East) warming gradient is found for summer (winter) along with a general increase in heavy precipitation and summer extreme temperatures. Tying the ensemble analysis to time periods with a prescribed global temperature change rather than fixed time periods allows for the identification of more robust regional patterns of temperature changes due to removal of some of the uncertainty related to the global models’ climate sensitivity.


Journal of Climate | 2005

Soil Control on Runoff Response to Climate Change in Regional Climate Model Simulations

B. J. J. M. van den Hurk; Martin Hirschi; Christoph Schär; Geert Lenderink; E. van Meijgaard; A. P. van Ulden; Burkhardt Rockel; Stefan Hagemann; Phil Graham; Erik Kjellström; Richard G. Jones

Simulations with seven regional climate models driven by a common control climate simulation of a GCM carried out for Europe in the context of the (European Union) EU-funded Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects (PRUDENCE) project were analyzed with respect to land surface hydrology in the Rhine basin. In particular, the annual cycle of the terrestrial water storage was compared to analyses based on the 40-yr ECMWF Re-Analysis (ERA-40) atmospheric convergence and observed Rhine discharge data. In addition, an analysis was made of the partitioning of convergence anomalies over anomalies in runoff and storage. This analysis revealed that most models underestimate the size of the water storage and consequently overestimated the response of runoff to anomalies in net convergence. The partitioning of these anomalies over runoff and storage was indicative for the response of the simulated runoff to a projected climate change consistent with the greenhouse gas A2 Synthesis Report on Emission Scenarios (SRES). In particular, the annual cycle of runoff is affected largely by the terrestrial storage reservoir. Larger storage capacity leads to smaller changes in both wintertime and summertime monthly mean runoff. The sustained summertime evaporation resulting from larger storage reservoirs may have a noticeable impact on the summertime surface temperature projections.


Journal of Climate | 2010

Using and Designing GCM–RCM Ensemble Regional Climate Projections

Elizabeth J. Kendon; Richard G. Jones; Erik Kjellström; James M. Murphy

Abstract Multimodel ensembles, whereby different global climate models (GCMs) and regional climate models (RCMs) are combined, have been widely used to explore uncertainties in regional climate projections. In this study, the extent to which information can be enhanced from sparsely filled GCM–RCM ensemble matrices and the way in which simulations should be prioritized to sample uncertainties most effectively are examined. A simple scaling technique, whereby the local climate response in an RCM is predicted from the large-scale change in the GCM, is found to often show skill in estimating local changes for missing GCM–RCM combinations. In particular, scaling shows skill for precipitation indices (including mean, variance, and extremes) across Europe in winter and mean and extreme temperature in summer and winter, except for hot extremes over central/northern Europe in summer. However, internal variability significantly impacts the ability to determine scaling skill for precipitation indices, with a three-...


Climatic Change | 2014

A framework for testing the ability of models to project climate change and its impacts

Jens Christian Refsgaard; Henrik Madsen; Vazken Andréassian; Karsten Arnbjerg-Nielsen; Thomas A. Davidson; Martin Drews; David P. Hamilton; Erik Jeppesen; Erik Kjellström; Jørgen E. Olesen; Torben O. Sonnenborg; Didde Trolle; Patrick Willems; Jesper Christensen

Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections.


Water Air and Soil Pollution | 1995

Global scale transport of acidifying pollutants

Henning Rodhe; Joakim Langner; Laura Gallardo; Erik Kjellström

During the past few years several attempts have been made to use three-dimensional tracer transport models to simulate the global distribution of sulfur and nitrogen compounds from both natural and anthropogenic sources. We review these studies and show examples of estimated distributions of the total deposition of sulfur, oxidized nitrogen and ammonium as well as the pH of precipitation. The simulated patterns are compared with observations. Weaknesses in these estimates resulting from lack of knowledge of emissions, chemical transformations and removal processes are emphasized and discussed. We also show examples of how the models can be used to estimate past and future deposition patterns. In particular, we use the IPCC scenario IS92a to estimate the possible sulfur deposition around the world in the year 2050. A comparison with critical load values for sulfur deposition indicates that substantial parts of South and East Asia are at risk for acidification problems in the future.


Tellus A | 2011

High‐resolution regional simulation of last glacial maximum climate in Europe

Gustav Strandberg; Jenny Brandefelt; Erik Kjellström; Benjamin Smith

Afully coupled atmosphere—ocean general circulationmodel is used to simulate climate conditions during the last glacial maximum (LGM). Forcing conditions include astronomical parameters, greenhouse gases, ice sheets and vegetation. A 50-yr period of the global simulation is dynamically downscaled to 50 km horizontal resolution over Europe with a regional climate model (RCM). A dynamic vegetation model is used to produce vegetation that is consistent with the climate simulated by the RCM. This vegetation is used in a final simulation with the RCM. The resulting climate is 5–10 ◦C colder than the recent past climate (representative of year 1990) over ice-free parts of Europe as an annual average; over the ice-sheet up to 40 ◦C colder in winter. The average model-proxy error is about the same for summer and winter, for pollen-based proxies. The RCM results are within (outside) the uncertainty limits for winter (summer). Sensitivity studies performed with the RCM indicate that the simulated climate is sensitive to changes in vegetation, whereas the location of the ice sheet only affects the climate around the ice sheet. The RCM-simulated interannual variability in near surface temperature is significantly larger at LGM than in the recent past climate.

Collaboration


Dive into the Erik Kjellström's collaboration.

Top Co-Authors

Avatar

Grigory Nikulin

Swedish Meteorological and Hydrological Institute

View shared research outputs
Top Co-Authors

Avatar

Gustav Strandberg

Swedish Meteorological and Hydrological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. A. Barrie

World Meteorological Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Jones

Swedish Meteorological and Hydrological Institute

View shared research outputs
Top Co-Authors

Avatar

Jenny Brandefelt

Swedish Nuclear Fuel and Waste Management Company

View shared research outputs
Top Co-Authors

Avatar

Lars Bärring

Swedish Meteorological and Hydrological Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge