Erik Klein
Slovak University of Technology in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik Klein.
Journal of Organic Chemistry | 2012
Elyas Nazarparvar; Mansour Zahedi; Erik Klein
In this paper, 23 substituents with various electron-donating and electron-withdrawing characters were placed in available positions of trans-resveratrol in order to study their effect on the three O-H bond dissociation enthalpies (BDEs) via density functional theory (DFT) with Becke three-parameter exchange and Lee-Yang-Parr correlation (B3LYP). It has been found that the mutual positions of substituents and OH groups affect investigated BDEs substantially. Formation of strong intramolecular hydrogen bonds and suitable spin density distributions in several radicals result in low BDEs. Calculated BDEs have been correlated with Hammett constants, selected geometry parameters, and charge on phenoxy radical oxygen q(O). Found dependences are satisfactorily linear.
Journal of Physical Chemistry A | 2008
Roland Šolc; Vladimír Lukeš; Erik Klein; Markus Griesser; Anne-Marie Kelterer
In this paper, quantum chemical calculations for various cyano derivatives of thiophene and terthiophenes at the density functional theory (DFT) and ab initio Møller-Plesset (MP2) levels of theory are presented. In the case of the studied terthiophenes, CN groups located in the central part of the molecule lead to a preference of cis-cis geometry over trans-trans conformation. For alpha-substituted dicyano terthiophene, the investigation of torsional dependences shows that the highest energy barrier occurs at the perpendicular orientation of the aromatic rings. On the other hand, the dicyano substitution in the central part of terthiophene molecule exhibits the lowest energy barrier. Excitation energies were calculated using time-dependent density functional theory (TD-DFT). The obtained theoretical results show that the CN groups in alpha and beta positions have a distinct effect on the excitation energies and corresponding oscillator strengths. A CN group located in the alpha position causes a larger bathochromic shift than a CN group in the beta position. Besides, a CN group in the beta position has negligible influence on the position of the first absorption maximum.
Acta Chimica Slovenica | 2013
Lenka Rottmannová; Peter Škorňa; Ján Rimarčík; Vladimír Lukeš; Erik Klein
Abstract In spite of the importance of proton transfer in solution-phase processes, there is still no systematic theoretical study of proton solvation enthalpies. We have investigated the solvation enthalpies of the proton in seven solvents of various polarities (benzene, chloroform, acetone, methanol, ethanol, DMSO, water) using the Integral Equation Formalism Polarized Continuum Model (IEF-PCM). All computations were performed at the B3LYP and BHLYP levels of theory with aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ basis sets. Our calculations have shown that the B3LYP and BHLYP functionals provide similar solvation enthalpies. Finally, differences in the solvation enthalpy of the proton values stemming from the various basis sets do not exceed 6 kJ mol-1, with exception of DMSO and chloroform. Distance between H+ and the acceptor atom of the solvent molecule is the shortest in the case of water. It has been also found that the B3LYP distances are slightly longer.
Acta Chimica Slovenica | 2012
Lenka Rottmannová; Kraiwan Punyain; Ján Rimarčík; Vladimír Lukeš; Erik Klein; Anne-Marie Kelterer
Theoretical study of 2-phenylpyrrole molecule using various quantum-chemical approaches A systematic theoretical study of 2-phenylpyrrole (PhPy) is presented for its neutral and monocharged states. The calculations were performed using the semiempirical Austin Model 1 (AM1) method, ab initio Møller-Plesset perturbation theory up to the second-order (MP2), density functional theory (DFT) and its tight-binding approximation (DFTB+). The comparison of the obtained equilibrium geometries showed that the C—C bond lengths in the phenylene ring are practically identical for the neutral state. Electric charging leads to significant changes in the geometry with respect to the neutral state. The C—N bonds in PhPy are elongated and the negative charging produces the out-of-plane distortion of N—H bond from the aromatic ring plane. The anionic state of the investigated molecule is connected with a higher perturbation of bond length alternation in both rings in comparison to the cationic state. The vibrationaly broadened absorption spectra, based on the on-the-fly molecular dynamics (MD) simulations, are also presented and compared with experimental spectra. Although the DFTB+ method has the tendency to planarize the investigated molecular structure, the agreement of simulated absorption spectra based on the MD DFTB+ geometries with TD-DFT calculations is acceptable.
Food Chemistry | 2018
Ana Amić; Zoran Marković; Erik Klein; Jasmina M. Dimitrić Marković; Dejan Milenković
The role of antiradical moieties (catechol, guaiacyl and carboxyl group) and molecular conformation in antioxidative potency of dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA) was investigated by density functional theory (DFT) method. The thermodynamic preference of different reaction paths of double (2H+/2e-) free radical scavenging mechanisms was estimated. Antiradical potency of DHCA and DHFA was compared with that exerted by their unsaturated analogs - caffeic acid (CA) and ferulic acid (FA). Cis/trans and anti-isomers of studied cinnamic acid derivatives may scavenge free radicals via double processes by involvement of catechol or guaiacyl moiety. Carboxyl group of syn-isomers may also participate in the inactivation of free radicals. Gibbs free energies of reactions with various free radicals indicate that syn-DHCA and syn-DHFA, colon catabolites that could be present in systemic circulation in low μM concentrations, have a potential to contribute to health benefits by direct free radical scavenging.
Structural Chemistry | 2015
Elyas Nazarparvar; Mansour Zahedi; Erik Klein
Abstract The effect of solvents and intramolecular hydrogen bonds on the three O–H bond dissociation enthalpies (BDEs) of non-substituted and substituted trans-resveratrols has been studied in water and benzene using DFT/B3LYP method. The formation of strong intramolecular hydrogen bonds in several radicals results in low BDEs. The solvent alters the intramolecular hydrogen bonds stabilization energies. In electron-withdrawing groups where the substituent causes high polarity of the parents and especially radicals, the effect of the solvent is stronger. When the substitution has a poor effect on the resveratrol molecule, the solvent has weak influence on formed radical stability, too. Besides intramolecular hydrogen bonds, the position, as well as electron-donating or electron-withdrawing character of a substituent in both, polar or nonpolar solvents, is able to affect OH BDEs substantially.
Acta Chimica Slovenica | 2012
Lenka Rottmannová; Adam Vagánek; Ján Rimarčík; Vladimír Lukeš; Erik Klein
S—H Bond Dissociation Enthalpies in para- and meta-Substituted Thiophenols: Correlation with Thiophenolic C—S Bond Length For mono-substituted anilines, phenols, and thiophenols it has been found that N—H, O—H and S—H bond dissociation enthalpies (BDE) depend on Hammett constants approximately linearly. For substituents placed in meta position, linearity of found dependences is usually considerably worse in comparison to para-substituted molecules. Therefore, their applicability for prediction of changes in BDE using substituent Hammett constant may be limited. In this work, we have found that the length of thiophenolic C—S bond, R(C—S), or its shortening after hydrogen atom abstraction, ΔR(C—S), represent suitable descriptors of substituent induced changes in S—H BDE. For fifteen studied meta-substituted thiophenols, these geometry descriptors correlate with S—H BDEs considerably better than Hammett constants.
Food Chemistry | 2018
Peter Poliak; Peter Škorňa; Erik Klein; Vladimír Lukeš
For nine symmetric natural carotenoids, a comprehensive thermodynamics study of processes associated with their radical scavenging activity is proposed. We have investigated the hydrogen atom transfer (HAT) from the parent carotenoid, mono-radical species, radical cations and radical anions. Electron transfer and proton transfer reactions were also studied. Terminal units and carbon atoms in their vicinity were identified as thermodynamically favoured reaction sites of the HAT mechanism. Rhodoxanthin, canthaxanthin and astaxanthin, as strong antioxidants, without any pro-oxidative effect, were found to have bond dissociation enthalpies (BDE) higher than 300 kJ mol-1 and the most negative electron affinities. The electron transfer to a carotenoid is exothermic, while other studied reactions are endothermic. In solvent, the electron transfer reactions may be preferred instead of hydrogen atom transfer.
Acta Chimica Slovenica | 2017
Martin Michalík; Peter Škorňa; Vladimír Lukeš; Erik Klein
Abstract In this article, the study of 67 compounds representing various para-, meta- and ortho- substituted formanilides is presented. These molecules and the products of their acidic and alkaline hydrolysis were studied using DFT quantum chemical methods in order to calculate the reaction enthalpies. These enthalpies are correlated with the hydrolysis rate constants, kH, published for the acid-catalysed acyl cleavage bimolecular (AAC2) mechanism and the modified base-catalysed acyl cleavage bimolecular (BAC2) mechanism. The found linear dependences can be used for the prediction of rate constants of non-synthesised formanilide derivatives.
Acta Chimica Slovenica | 2016
Peter Škorňa; Martin Michalík; Erik Klein
Abstract The DFT study of primary antioxidant action of gallic acid and its carboxylic anion is presented in the gas-phase, benzene and water. Corresponding reaction enthalpies for three possible mechanisms was calculated using B3LYP/6-311++G** method. Bond dissociation enthalpy (BDE) and proton dissociation enthalpy (PDE) of 4-OH group was found to be the lowest in gas-phase as well as in both solvents approximated by IEF-PCM model. Ionization potentials (IPs) were higher than BDEs in all cases. Deprotonation of carboxylic group result in increased antioxidant potency as drop in BDE, proton affinities (PAs) and IPs was indicated in all environments.