Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Martinez-Hackert is active.

Publication


Featured researches published by Erik Martinez-Hackert.


Journal of Biological Chemistry | 2010

Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIB

Dianne Sako; Asya Grinberg; June Liu; Monique V. Davies; Roselyne Castonguay; Silas Maniatis; Amy Andreucci; Eileen Pobre; Kathleen N. Tomkinson; Travis E. Monnell; Jeffrey Ucran; Erik Martinez-Hackert; R. Scott Pearsall; Kathryn W. Underwood; Jasbir Seehra; Ravindra Kumar

The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble activin receptor type IIB-Fc chimera (ActRIIB.Fc). We show that both GDF-8 and GDF-11 bind the extracellular domain of ActRIIB with affinities comparable with those of activin A, a known high affinity ActRIIB ligand, whereas BMP-2 and BMP-7 affinities for ActRIIB are at least 100-fold lower. Using site-directed mutagenesis, we demonstrate that ActRIIB binds GDF-11 and activin A in different ways such as, for example, substitutions in ActRIIB Leu79 effectively abolish ActRIIB binding to activin A yet not to GDF-11. Native ActRIIB has four isoforms that differ in the length of the C-terminal portion of their extracellular domains. We demonstrate that the C terminus of the ActRIIB extracellular domain is crucial for maintaining biological activity of the ActRIIB.Fc receptor chimera. In addition, we show that glycosylation of ActRIIB is not required for binding to activin A or GDF-11. Together, our findings reveal binding specificity and activity determinants of the ActRIIB receptor that combine to effect specificity in the activation of distinct signaling pathways.


Cell | 2009

Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone

Erik Martinez-Hackert; Wayne A. Hendrickson

Trigger factor (TF) is a molecular chaperone that binds to bacterial ribosomes where it contacts emerging nascent chains, but TF is also abundant free in the cytosol where its activity is less well characterized. In vitro studies show that TF promotes protein refolding. We find here that ribosome-free TF stably associates with and rescues from misfolding a large repertoire of full-length proteins. We identify over 170 members of this cytosolic Escherichia coli TF substrate proteome, including ribosomal protein S7. We analyzed the biochemical properties of a TF:S7 complex from Thermotoga maritima and determined its crystal structure. Thereby, we obtained an atomic-level picture of a promiscuous chaperone in complex with a physiological substrate protein. The structure of the complex reveals the molecular basis of substrate recognition by TF, indicates how TF could accelerate protein folding, and suggests a role for TF in the biogenesis of protein complexes.


Nature | 2011

Crystal structure of a potassium ion transporter, TrkH

Yu Cao; Xiangshu Jin; Hua Huang; Mehabaw Getahun Derebe; Elena J. Levin; Venkataraman Kabaleeswaran; Yaping Pan; Marco Punta; J. Love; Jun Weng; Matthias Quick; Sheng Ye; Brian Kloss; Renato Bruni; Erik Martinez-Hackert; Wayne A. Hendrickson; Burkhard Rost; Jonathan A. Javitch; Kanagalaghatta R. Rajashankar; Youxing Jiang; Ming Zhou

The TrkH/TrkG/KtrB proteins mediate K+ uptake in bacteria and probably evolved from simple K+ channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K+ channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K+ and Rb+ over smaller ions such as Na+ or Li+. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K+ flux. These results reveal the molecular basis of K+ selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.


Journal of Biological Chemistry | 2012

Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex

Sharon A. Townson; Erik Martinez-Hackert; Chloe Greppi; Patricia Lowden; Dianne Sako; June Liu; Jeffrey Ucran; Katia Liharska; Kathryn W. Underwood; Jasbir Seehra; Ravindra Kumar; Asya Grinberg

Background: Activin receptor-like kinase 1 (ALK1) is an important regulator of normal blood vessel formation and pathological tumor angiogenesis. Results: Crystal structure of ALK1-BMP9-ACTRIIB signaling complex and kinetic and thermodynamic properties of receptor-ligand interactions are described. Conclusions: ALK1 achieves high specificity for BMP9/10 through unusual receptor positioning and unique receptor-ligand interface. Significance: Structural and mechanistic insights into ALK1 signaling provide a framework for novel anti-angiogenic therapies. Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer therapeutics. Given the biological and clinical importance of the ALK1 signaling pathway, we sought to elucidate the biophysical and structural basis underlying ALK1 signaling. The TGF-β family ligands BMP9 and BMP10 as well as the three type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII have been implicated in ALK1 signaling. Here, we provide a kinetic and thermodynamic analysis of BMP9 and BMP10 interactions with ALK1 and type II receptors. Our data show that BMP9 displays a significant discrimination in type II receptor binding, whereas BMP10 does not. We also report the crystal structure of a fully assembled ternary complex of BMP9 with the extracellular domains of ALK1 and ActRIIB. The structure reveals that the high specificity of ALK1 for BMP9/10 is determined by a novel orientation of ALK1 with respect to BMP9, which leads to a unique set of receptor-ligand interactions. In addition, the structure explains how BMP9 discriminates between low and high affinity type II receptors. Taken together, our findings provide structural and mechanistic insights into ALK1 signaling that could serve as a basis for novel anti-angiogenic therapies.


Journal of Virology | 2006

Crystal Structure of the Moloney Murine Leukemia Virus RNase H Domain

David Lim; G. Glenn Gregorio; Craig Bingman; Erik Martinez-Hackert; Wayne A. Hendrickson; Stephen P. Goff

ABSTRACT A crystallographic study of the Moloney murine leukemia virus (Mo-MLV) RNase H domain was performed to provide information about its structure and mechanism of action. These efforts resulted in the crystallization of a mutant Mo-MLV RNase H lacking the putative helix C (ΔC). The 1.6-Å resolution structure resembles the known structures of the human immunodeficiency virus type 1 (HIV-1) and Escherichia coli RNase H. The structure revealed the coordination of a magnesium ion within the catalytic core comprised of the highly conserved acidic residues D524, E562, and D583. Surface charge mapping of the Mo-MLV structure revealed a high density of basic charges on one side of the enzyme. Using a model of the Mo-MLV structure superimposed upon a structure of HIV-1 reverse transcriptase bound to an RNA/DNA hybrid substrate, Mo-MLV RNase H secondary structures and individual amino acids were examined for their potential roles in binding substrate. Identified regions included Mo-MLV RNase H β1-β2, αA, and αB and residues from αB to αD and its following loop. Most of the identified substrate-binding residues corresponded with residues directly binding nucleotides in an RNase H from Bacillus halodurans as observed in a cocrystal structure with RNA/DNA. Finally, superimposition of RNases H of Mo-MLV, E. coli, and HIV-1 revealed that a loop of the HIV-1 connection domain resides within the same region of the Mo-MLV and E. coli C-helix. The HIV-1 connection domain may serve to recognize and bind the RNA/DNA substrate major groove.


Biochemistry | 2003

Distinct molecular mechanisms account for the specificity of two different T-cell receptors.

Nadja Anikeeva; Tatiana Lebedeva; Michelle Krogsgaard; Sergey Y. Tetin; Erik Martinez-Hackert; Spyros A. Kalams; Mark M. Davis; Yuri Sykulev

Analysis of the thermodynamics of the interactions between the D3 T-cell receptor (TCR) and its natural ligand, an HIV peptide bound to a HLA-A0201 (HLA-A2) major histocompatibility complex (MHC) protein, shows both similarities and striking differences when compared with the 2B4 TCR binding to its peptide-MHC ligand. The equilibrium thermodynamic parameters of both reactions are consistent with a conformational adjustment at the binding interface during the formation of specific TCR-peptide-MHC complexes. However, osmolytic reagents that dehydrate protein surfaces have profoundly different effects on the strength of the two reactions, indicating that water molecules make very different contributions-enhancing the binding of D3 TCR but weakening the binding of 2B4 TCR. The use of these different mechanisms by TCRs to recognize ligands might be an important means augmenting their inherent cross-reactivity.


Journal of Biological Chemistry | 2008

How a T Cell Receptor-like Antibody Recognizes Major Histocompatibility Complex-bound Peptide

Tatiana Mareeva; Erik Martinez-Hackert; Yuri Sykulev

We determined the crystal structures of the T cell receptor (TCR)-like antibody 25-D1.16 Fab fragment bound to a complex of SIINFEKL peptide from ovalbumin and the H-2Kb molecule. Remarkably, this antibody directly “reads” the structure of the major histocompatibility complex (MHC)-bound peptide, employing the canonical diagonal binding mode utilized by most TCRs. This is in marked contrast with another TCR-like antibody, Hyb3, bound to melanoma peptide MAGE-A1 in association with HLA-A1 MHC class I. Hyb3 assumes a non-canonical orientation over its cognate peptide-MHC and appears to recognize a conformational epitope in which the MHC contribution is dominant. We conclude that TCR-like antibodies can recognize MHC-bound peptide via two different mechanisms: one is similar to that exploited by the preponderance of TCRs and the other requires a non-canonical antibody orientation over the peptide-MHC complex.


Journal of Biological Chemistry | 2006

Structural Basis for Degenerate Recognition of Natural HIV Peptide Variants by Cytotoxic Lymphocytes.

Erik Martinez-Hackert; Nadia Anikeeva; Spyros A. Kalams; Bruce D. Walker; Wayne A. Hendrickson; Yuri Sykulev

It is well established that even small changes in amino acid side chains of antigenic peptide bound to major histocompatibility complex (MHC) protein may completely abrogate recognition of the peptide-MHC (pMHC) complex by the T cell receptor (TCR). Often, however, several nonconservative substitutions in the peptide antigen are accommodated and do not impair its recognition by TCR. For example, a preponderance of natural sequence variants of the human immunodeficiency virus p17 Gag-derived peptide SLYNTVATL (SL9) are recognized by cytotoxic T lymphocytes, which implies that interactions with SL9 variants are degenerate both with respect to the class I MHC molecule and with respect to TCR. Here we study the molecular basis for this degenerate recognition of SL9 variants. We show that several SL9 variants bind comparably well to soluble HLA-A2 and to a particular soluble TCR and that these variants are active in the cognate cytotoxicity assay. Natural SL9 variation is restricted by its context in the HIV p17 matrix protein. High resolution crystal structures of seven selected SL9 variants bound to HLA-A2 all have remarkably similar peptide conformations and side-chain dispositions outside sites of substitution. This preservation of the peptide conformation despite epitope variations suggests a mechanism for the observed degeneracy in pMHC recognition by TCR and may contribute to the persistence of SL9-mediated immune responses in chronically infected individuals.


Nature Communications | 2016

Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells.

Henning Kempf; Ruth Olmer; Alexandra Haase; Annika Franke; Emiliano Bolesani; Kristin Schwanke; Diana Robles-Diaz; Michelle Coffee; Gudrun Göhring; Gerald Dräger; Oliver Pötz; Thomas O. Joos; Erik Martinez-Hackert; Axel Haverich; Falk F. R. Buettner; Ulrich Martin; Robert Zweigerdt

In vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates early aspects of human embryogenesis, but the underlying processes are poorly understood and controlled. Here we show that modulating the bulk cell density (BCD: cell number per culture volume) deterministically alters anteroposterior patterning of primitive streak (PS)-like priming. The BCD in conjunction with the chemical WNT pathway activator CHIR99021 results in distinct paracrine microenvironments codifying hPSCs towards definitive endoderm, precardiac or presomitic mesoderm within the first 24 h of differentiation, respectively. Global gene expression and secretome analysis reveals that TGFß superfamily members, antagonist of Nodal signalling LEFTY1 and CER1, are paracrine determinants restricting PS progression. These data result in a tangible model disclosing how hPSC-released factors deflect CHIR99021-induced lineage commitment over time. By demonstrating a decisive, functional role of the BCD, we show its utility as a method to control lineage-specific differentiation. Furthermore, these findings have profound consequences for inter-experimental comparability, reproducibility, bioprocess optimization and scale-up.


Journal of Biological Chemistry | 2016

Transforming Growth Factor-β family ligands can function as antagonists by competing for type II receptor binding

Senem Aykul; Erik Martinez-Hackert

Transforming growth factor-β (TGF-β) family ligands are pleiotropic cytokines. Their physiological activities are not determined by a simple coupling of stimulus and response, but depend critically on context, i.e. the interplay of receptors, ligands, and regulators that form the TGF-β signal transduction system of a cell or tissue. How these different components combine to regulate signaling activities remains poorly understood. Here, we describe a ligand-mediated mechanism of signaling regulation. Based on the observation that the type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII interact with a large group of overlapping ligands at overlapping epitopes, we hypothesized high affinity ligands compete with low affinity ligands for receptor binding and signaling. We show activin A and other high affinity ligands directly inhibited signaling by the low affinity ligands BMP-2, BMP-7, and BMP-9. We demonstrate activin A functions as a competitive inhibitor that blocks the ligand binding epitope on type II receptors. We propose binding competition and signaling antagonism are integral functions of the TGF-β signal transduction system. These functions could help explain how activin A modulates physiological signaling during extraordinary cellular responses, such as injury and wound healing, and how activin A could elicit disease phenotypes such as cancer-related muscle wasting and fibrosis.

Collaboration


Dive into the Erik Martinez-Hackert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Senem Aykul

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasbir Seehra

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Yuri Sykulev

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Ann H. West

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravindra Kumar

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge