Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Meredith is active.

Publication


Featured researches published by Erik Meredith.


FEBS Letters | 2010

A novel kinase inhibitor establishes a predominant role for protein kinase D as a cardiac class IIa histone deacetylase kinase

Lauren G. Monovich; Richard B. Vega; Erik Meredith; Karl Miranda; Chang Rao; Michael Paul Capparelli; Douglas D. Lemon; Dillon Phan; Keith A. Koch; Joseph A. Chapo; David B. Hood; Timothy A. McKinsey

Class IIa histone deacetylases (HDACs) repress genes involved in pathological cardiac hypertrophy. The anti‐hypertrophic action of class IIa HDACs is overcome by signals that promote their phosphorylation‐dependent nuclear export. Several kinases have been shown to phosphorylate class IIa HDACs, including calcium/calmodulin‐dependent protein kinase (CaMK), protein kinase D (PKD) and G protein‐coupled receptor kinase (GRK). However, the identity of the kinase(s) responsible for phosphorylating class IIa HDACs during cardiac hypertrophy has remained controversial. We describe a novel and selective small molecule inhibitor of PKD, bipyridyl PKD inhibitor (BPKDi). BPKDi blocks signal‐dependent phosphorylation and nuclear export of class IIa HDACs in cardiomyocytes and concomitantly suppresses hypertrophy of these cells. These studies define PKD as a principal cardiac class IIa HDAC kinase.


Journal of Medicinal Chemistry | 2010

Identification of Orally Available Naphthyridine Protein Kinase D Inhibitors

Erik Meredith; Ophelia Ardayfio; Kimberly Beattie; Markus Dobler; Istvan J. Enyedy; Christoph Gaul; Vinayak Hosagrahara; Charles Jewell; Keith A. Koch; Wendy Lee; Hansjoerg Lehmann; Timothy A. McKinsey; Karl Miranda; Nikos Pagratis; Margaret R. Pancost; Anup Patnaik; Dillon Phan; Craig F. Plato; Ming Qian; Vasumathy Rajaraman; Chang Rao; Olga Rozhitskaya; Thomas Ruppen; Jie Shi; Sarah Siska; Clayton Springer; Maurice J. van Eis; Richard B. Vega; Anette Von Matt; Lihua Yang

A novel 2,6-naphthyridine was identified by high throughput screen (HTS) as a dual protein kinase C/D (PKC/PKD) inhibitor. PKD inhibition in the heart was proposed as a potential antihypertrophic mechanism with application as a heart failure therapy. As PKC was previously identified as the immediate upstream activator of PKD, PKD vs PKC selectivity was essential to understand the effect of PKD inhibition in models of cardiac hypertrophy and heart failure. The present study describes the modification of the HTS hit to a series of prototype pan-PKD inhibitors with routine 1000-fold PKD vs PKC selectivity. Example compounds inhibited PKD activity in vitro, in cells, and in vivo following oral administration. Their effects on heart morphology and function are discussed herein.


Journal of Medicinal Chemistry | 2010

Identification of Potent and Selective Amidobipyridyl Inhibitors of Protein Kinase D

Erik Meredith; Kimberly Beattie; Robin Burgis; Michael Paul Capparelli; Joseph A. Chapo; Lucian DiPietro; Gabriel G. Gamber; Istvan J. Enyedy; David B. Hood; Vinayak Hosagrahara; Charles Jewell; Keith A. Koch; Wendy Lee; Douglas D. Lemon; Timothy A. McKinsey; Karl Miranda; Nikos Pagratis; Dillon Phan; Craig F. Plato; Chang Rao; Olga Rozhitskaya; Nicolas Soldermann; Clayton Springer; Maurice J. van Eis; Richard B. Vega; Wanlin Yan; Qingming Zhu; Lauren G. Monovich

The synthesis and biological evaluation of potent and selective PKD inhibitors are described herein. The compounds described in the present study selectively inhibit PKD among other putative HDAC kinases. The PKD inhibitors of the present study blunt phosphorylation and subsequent nuclear export of HDAC4/5 in response to diverse agonists. These compounds further establish the central role of PKD as an HDAC4/5 kinase and enhance the current understanding of cardiac myocyte signal transduction. The in vivo efficacy of a representative example compound on heart morphology is reported herein.


Investigative Ophthalmology & Visual Science | 2014

Reliability of the mouse model of choroidal neovascularization induced by laser photocoagulation.

Stephen Poor; Yubin Qiu; Elizabeth Fassbender; Siyuan Shen; Amber Woolfenden; Andrea Delpero; Yong Kim; Natasha Buchanan; Thomas C. Gebuhr; Shawn Hanks; Erik Meredith; Bruce D Jaffee; Thaddeus P. Dryja

PURPOSE We attempted to reproduce published studies that evaluated whether the following factors influence choroidal neovascularization (CNV) induced by laser photocoagulation in murine retinas: small interfering RNA (siRNA), cobra venom factor, complement factors C3 and C5, and complement receptor C5aR. In addition, we explored whether laser-induced CNV in mice was influenced by the vendor of origin of the animals. METHODS Reagents or genotypes reported by others to influence CNV in this model were assessed using our standard procedures. Retrospective analyses of control or placebo mice in many experiments were done to evaluate whether the CNV area induced by laser photocoagulation varied according to vendor. RESULTS Administration of the following agents did not have a substantial impact on the CNV induced by laser burns in mice: siRNA, low-molecular-weight inhibitor of the C5a receptor (PMX53), or cobra venom factor. Jackson Laboratory (JAX) mice lacking either C3 or C5 had increased neovascularization compared to non-littermate JAX wild-type controls. Taconic mice lacking C3 had reduced CNV compared to non-littermate Taconic wild-type control mice. A retrospective analysis of vehicle-treated wild-type C57BL/6 mice used as controls across 132 experiments conducted from 2007 to 2010 revealed that mice purchased from JAX or from Charles River produced less neovascularization than mice from Taconic. CONCLUSIONS We present our recommended methods for conducting experiments with the mouse laser-induced CNV model to enhance reproducibility and minimize investigator bias.


Bioorganic & Medicinal Chemistry Letters | 2011

3,5-Diarylazoles as novel and selective inhibitors of protein kinase D

Gabriel G. Gamber; Erik Meredith; Qingming Zhu; Wanlin Yan; Chang Rao; Michael Paul Capparelli; Robin Burgis; Istvan J. Enyedy; Ji-Hu Zhang; Nicolas Soldermann; Kimberley Beattie; Olga Rozhitskaya; Keith A. Koch; Nikos Pagratis; Vinayak P. Hosagrahara; Richard B. Vega; Timothy A. McKinsey; Lauren G. Monovich

The synthesis and preliminary studies of the SAR of novel 3,5-diarylazole inhibitors of Protein Kinase D (PKD) are reported. Notably, optimized compounds in this class have been found to be active in cellular assays of phosphorylation-dependant HDAC5 nuclear export, orally bioavailable, and highly selective versus a panel of additional putative histone deacetylase (HDAC) kinases. Therefore these compounds could provide attractive tools for the further study of PKD/HDAC5 signaling.


ACS Medicinal Chemistry Letters | 2013

Discovery and in Vivo Evaluation of Potent Dual CYP11B2 (Aldosterone Synthase) and CYP11B1 Inhibitors.

Erik Meredith; Gary Michael Ksander; Lauren G. Monovich; Julien Papillon; Qian Liu; Karl Miranda; Patrick Morris; Chang Rao; Robin Burgis; Michael Paul Capparelli; Qi-Ying Hu; Alok Singh; Dean F. Rigel; Arco Y. Jeng; Michael E. Beil; Fumin Fu; Chii-Whei Hu; Daniel LaSala

Aldosterone is a key signaling component of the renin-angiotensin-aldosterone system and as such has been shown to contribute to cardiovascular pathology such as hypertension and heart failure. Aldosterone synthase (CYP11B2) is responsible for the final three steps of aldosterone synthesis and thus is a viable therapeutic target. A series of imidazole derived inhibitors, including clinical candidate 7n, have been identified through design and structure-activity relationship studies both in vitro and in vivo. Compound 7n was also found to be a potent inhibitor of 11β-hydroxylase (CYP11B1), which is responsible for cortisol production. Inhibition of CYP11B1 is being evaluated in the clinic for potential treatment of hypercortisol diseases such as Cushings syndrome.


Bioorganic & Medicinal Chemistry Letters | 2010

The discovery of potent inhibitors of aldosterone synthase that exhibit selectivity over 11-β-hydroxylase

Christopher Michael Adams; Chii-Whei Hu; Arco Y. Jeng; Rajeshri Ganesh Karki; Gary Michael Ksander; Dan LaSala; Jennifer Leung-Chu; Guiqing Liang; Qian Liu; Erik Meredith; Chang Rao; Dean F. Rigel; Jie Shi; Sherri Smith; Clayton Springer; Chun Zhang

Aldosterone, the final component of the renin-angiotensin-aldosterone system, plays an important role in the pathophysiology of hypertension and congestive heart failure. Aldosterone synthase (CYP11B2) catalyzes the last three steps of aldosterone biosynthesis, and as such appears to be a target for the treatment of these disorders. A sulfonamide-imidazole scaffold has proven to be a potent inhibitor of CYP11B2. Furthermore, this scaffold can achieve high levels of selectivity for CYP11B2 over CYP11B1, a key enzyme in the biosynthesis of cortisol.


Journal of Medicinal Chemistry | 2015

Discovery of Oral VEGFR-2 Inhibitors with Prolonged Ocular Retention That Are Efficacious in Models of Wet Age-Related Macular Degeneration

Erik Meredith; Nello Mainolfi; Stephen Poor; Yubin Qiu; Karl Miranda; James C. Powers; Donglei Liu; Fupeng Ma; Catherine Solovay; Chang Rao; Leland Johnson; Nan Ji; Gerald Artman; Leo Hardegger; Shawn Hanks; Siyuan Shen; Amber Woolfenden; Elizabeth Fassbender; Jeremy M. Sivak; Yiqin Zhang; Debby Long; Rosemarie Cepeda; Fang Liu; Vinayak Hosagrahara; Wendy Lee; Peter Tarsa; Karen S. Anderson; Jason Matthew Elliott; Bruce Jaffee

The benefit of intravitreal anti-VEGF therapy in treating wet age-related macular degeneration (AMD) is well established. Identification of VEGFR-2 inhibitors with optimal ADME properties for an ocular indication provides opportunities for dosing routes beyond intravitreal injection. We employed a high-throughput in vivo screening strategy with rodent models of choroidal neovascularization and iterative compound design to identify VEGFR-2 inhibitors with potential to benefit wet AMD patients. These compounds demonstrate preferential ocular tissue distribution and efficacy after oral administration while minimizing systemic exposure.


PLOS ONE | 2014

Lack of Involvement of CEP Adducts in TLR Activation and in Angiogenesis

John S. Gounarides; Jennifer Cobb; Jing Zhou; Frank Cook; Xuemei Yang; Hong Yin; Erik Meredith; Chang Rao; Qian Huang; YongYao Xu; Karen Anderson; Andrea De Erkenez; Sha-Mei Liao; Maura Crowley; Natasha Buchanan; Stephen Poor; Yubin Qiu; Elizabeth Fassbender; Siyuan Shen; Amber Woolfenden; Amy Jensen; Rosemarie Cepeda; Bijan Etemad-Gilbertson; Shelby Giza; Muneto Mogi; Bruce D Jaffee; Sassan Azarian

Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others.


ACS Medicinal Chemistry Letters | 2016

Core Replacements in a Potent Series of VEGFR-2 Inhibitors and Their Impact on Potency, Solubility, and hERG.

Nello Mainolfi; James C. Powers; Erik Meredith; Jason Matthew Elliott; Karl G. Gunderson; Stephen Poor; Fang Liu; Karen S. Anderson

Anti-VEGF therapy has been a clinically validated treatment of age-related macular degeneration (AMD). We have recently reported the discovery of indole based oral VEGFR-2 inhibitors that provide sustained ocular retention and efficacy in models of wet-AMD. We disclose herein the synthesis and the biological evaluation of a series of novel core replacements as an expansion of the reported indole based VEGFR-2 inhibitor series. Addition of heteroatoms to the existing core and/or rearranging the heteroatoms around the 6-5 bicyclic ring structure produced a series of compounds that generally retained good on-target potency and an improved solubility profile. The hERG affinity was proven not be dependent on the change in lipophilicity through alteration of the core structure. A serendipitous discovery led to the identification of a new indole-pyrimidine connectivity: from 5-hydroxy to 6-hydroxyindole with potentially vast implication on the in vitro/in vivo properties of this class of compounds.

Collaboration


Dive into the Erik Meredith's collaboration.

Researchain Logo
Decentralizing Knowledge