Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Michaëlsson is active.

Publication


Featured researches published by Erik Michaëlsson.


International Immunopharmacology | 2008

Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease.

Silvia Melgar; Lisa Karlsson; Erika Rehnström; Agneta Karlsson; Helena Utkovic; Liselotte Jansson; Erik Michaëlsson

Dextran sulfate sodium (DSS)-induced colitis is one of the most frequently used rodent models for inflammatory bowel disease (IBD). The aim of this study was to validate the murine DSS-induced colitis model using four therapeutic agents for IBD. C57BL/6 mice were exposed to 3% DSS for 5days followed by 7-9 days of water (acute inflammation) or 20-31 days of water (chronic phase). Clinical symptoms, plasma and colonic inflammatory markers and histology were assessed for the efficacy of cyclosporine A (CsA), methotrexate or anti-IL-12p40 in acute colitis and of anti-IL-12p40 or an agonistic anti-CD3 antibody in chronic colitis. Cyclosporine A and anti-IL-12p40 (in the acute phase) and anti-CD3 (in the chronic phase) treatment attenuated local cytokine levels, improved clinical symptoms (CsA and anti-IL-12p40) and histology (CsA and anti-CD3). Further, anti-IL-12p40 treatment was partly efficacious in the chronic phase, whereas methotrexate showed no efficacy in the acute colitis. Thus, three of the current tested agents showed efficacy in the disease model, arguing that DSS-induced colitis can be used as a relevant model for the translation of mice data to human disease.


Metabolism-clinical and Experimental | 2008

Intestinal, adipose, and liver inflammation in diet-induced obese mice

Hong Li; Christopher J. Lelliott; Pernilla Håkansson; Karolina Ploj; Anna Tuneld; Martina Verolin-Johansson; Lambertus Benthem; Björn Carlsson; Leonard H. Storlien; Erik Michaëlsson

Chronic inflammation and increased visceral adipose tissue (VAT) are key elements of the metabolic syndrome. Both are considered to play a pathogenic role in the development of liver steatosis and insulin resistance. The aim of the present study was to investigate the hypothesis that an inflamed intestine, induced both by diet and chemical irritation, could induce persistent inflammation in VAT. Female C57BL/6JOlaHsd mice were used. In study I, groups of mice (n = 6 per group) were given an obesity-inducing cafeteria diet (diet-induced obesity) or regular chow only (control) for 14 weeks. In study II, colitis in mice (n = 8) was induced by 3% dextran sulfate sodium in tap water for 5 days followed by 21 days of tap water alone. Healthy control mice (n = 8) had tap water only. At the end of the studies, all mice were killed; and blood and tissues were sampled and processed for analysis. Body weight of diet-induced obese mice was greatly increased, with evidence of systemic inflammation, insulin resistance, and liver steatosis. Tissue inflammation indexed by proinflammatory cytokine expression was recorded in liver, mesenteric fat, and proximal colon/distal ileum, but not in subcutaneous or perigonadal fat. In dextran sulfate sodium-induced colitis mice, mesenteric fat was even more inflamed than the colon, whereas a much milder inflammation was seen in liver and subcutaneous fat. The studies showed both diet- and colitis-initiated inflammation in mesenteric fat. Fat depots contiguous with intestine and their capacity for exaggerated inflammatory responses to conditions of impaired gut barrier function may account for the particularly pathogenic role of VAT in obesity-induced metabolic disorders.


Inflammatory Bowel Diseases | 2006

Magnetic resonance imaging of experimental mouse colitis and association with inflammatory activity

Anna Larsson; Silvia Melgar; Erika Rehnström; Erik Michaëlsson; Lennart Svensson; Paul D. Hockings; Lars E. Olsson

Background: Ulcerative colitis and Crohns disease are the major chronic inflammatory bowel diseases affecting the gastrointestinal tract in humans. Imaging techniques such as endoscopy and computed tomography are used to monitor disease activity. Magnetic resonance imaging (MRI) is emerging as a diagnostic modality, and studies have shown that MRI can be used in the diagnostic procedure of patients with inflammatory bowel disease. The aim of the present study was to investigate the role of MRI in quantitatively reflecting inflammation in an experimental mouse colitis model. Methods: Colonic inflammation was induced by exposing mice to dextran sulfate sodium. MRI was used to assess colon wall thickness, T2‐weighted (T2w) signal, and contrast‐enhanced T1‐weighted (T1w) signal in inflamed and healthy animals in vivo. Haptoglobin and interleukin‐1&bgr; served as systemic and local inflammatory markers, and macroscopic ex vivo scoring of the colon was performed to assess colonic inflammation. Results: Dextran sulfate sodium‐exposed animals displayed increased levels of inflammatory markers and higher inflammatory score compared with healthy animals. Colon wall thickness and contrast‐enhanced T1w signal were significantly increased in dextran sulfate sodium‐exposed compared with healthy animals. In addition, the T2w signal was positively correlated with haptoglobin levels and colon wall thickness in the inflamed animals. Conclusions: Our results show that MRI can be used to depict healthy and inflamed mouse colon and that the T2w signal, contrast‐enhanced T1w signal, and colon wall thickness may be used to characterize inflammation in experimental colitis. These potential biomarkers may be useful in the evaluation of putative drugs in longitudinal studies in both mice and humans.


Free Radical Biology and Medicine | 2015

Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species

Halla Björnsdottir; Amanda Welin; Erik Michaëlsson; Osla; Stefan Berg; Karin Christenson; Martina Sundqvist; Claes Dahlgren; Anna Karlsson; Johan Bylund

AIM Neutrophil extracellular traps (NETs) are mesh-like DNA fibers clad with intracellular proteins that are cast out from neutrophils in response to certain stimuli. The process is thought to depend on reactive oxygen species (ROS) generated by the phagocyte NADPH-oxidase and the ROS-modulating granule enzyme myeloperoxidase (MPO), but when, how, and where these factors contribute is so far uncertain. The neutrophil NADPH-oxidase can be activated at different cellular sites and ROS may be produced and processed by MPO within intracellular granules, even in situations where a phagosome is not formed, e.g., upon stimulation with phorbol myristate acetate (PMA). OBJECTIVES We investigated the subcellular location of ROS production and processing by MPO in the context of PMA-induced NET formation. RESULTS Complete neutralization of extracellular ROS was not sufficient to block NET formation triggered by PMA, indicating that intragranular ROS are critical for NETosis. Employing a set of novel MPO-inhibitors, inhibition of NET formation correlated with inhibition of intragranular MPO activity. Also, extracellular addition of MPO was not sufficient to rescue NET formation in completely MPO-deficient neutrophils and specific neutralization by luminol of MPO-processed ROS within intracellular granules led to a complete block of PMA-triggered NET formation. CONCLUSION We show for the first time that inhibition of intragranular MPO activity, or neutralization of intragranular MPO-processed ROS by luminol effectively block NET formation. Our data demonstrate that ROS must be formed and processed by MPO in order to trigger NET formation, and that these events have to occur within intracellular granules.


Vascular Pharmacology | 2014

Stimulation of α7 nicotinic acetylcholine receptor by AR-R17779 suppresses atherosclerosis and aortic aneurysm formation in apolipoprotein E-deficient mice.

Toru Hashimoto; Toshihiro Ichiki; Aya Watanabe; Eva Hurt-Camejo; Erik Michaëlsson; Jiro Ikeda; Eriko Inoue; Hirohide Matsuura; Tomotake Tokunou; Shiro Kitamoto; Kenji Sunagawa

Atherosclerosis is a chronic inflammatory disease. It has been appreciated that vagus nerve inhibits macrophage activation via α7 nicotinic acetylcholine receptor (nAChR), termed the cholinergic anti-inflammatory pathway. We explored the effects of AR-R17779, a selective α7nAChR agonist, on atherosclerosis and aneurysm formation in apolipoprotein E (ApoE)-deficient mice. ApoE-deficient mice were fed a high-fat diet (HFD) and angiotensin II (Ang II) was infused by osmotic minipumps from 10-week-old for 4weeks. AR-R17779 was given in drinking water ad libitum. Oil red O staining of the aorta showed that combined loading of HFD and Ang II induced marked atherosclerosis compared with control mice fed a normal chow. Treatment with AR-R17779 significantly reduced atherosclerotic plaque area and improved survival of mice. Treatment with AR-R17779 also suppressed abdominal aortic aneurysm formation. Quantitative RT-PCR of the aorta revealed that mRNA expression levels of interleukin-1β, interleukin-6 and NOX2 were significantly decreased in AR-R17779-treated mice compared with Ang II+HFD mice. AR-R17779 treatment also reduced blood pressure and serum lipid levels. In conclusion, α7nAChR activation attenuates atherogenesis and aortic abdominal aneurysm formation in ApoE-deficient mice possibly through an anti-inflammatory effect and reduction of blood pressure and lipid levels. Pharmacological activation of α7nAChR may have a therapeutic potential against atherosclerotic vascular diseases through multiple mechanisms.


Circulation-cardiovascular Genetics | 2017

Inflammatory Biomarkers Predict Heart Failure Severity and Prognosis in Patients With Heart Failure With Preserved Ejection FractionCLINICAL PERSPECTIVE: A Holistic Proteomic Approach

Camilla Hage; Erik Michaëlsson; Cecilia Linde; Erwan Donal; Jean-Claude Daubert; Li-Ming Gan; Lars H. Lund

Background— Underlying mechanisms in heart failure (HF) with preserved ejection fraction remain unknown. We investigated cardiovascular plasma biomarkers in HF with preserved ejection fraction and their correlation to diastolic dysfunction, functional class, pathophysiological processes, and prognosis. Methods and Results— In 86 stable patients with HF and EF ≥45% in the Karolinska Rennes (KaRen) biomarker substudy, biomarkers were quantified by a multiplex immunoassay. Orthogonal projection to latent structures by partial least square analysis was performed on 87 biomarkers and 240 clinical variables, ranking biomarkers associated with New York Heart Association (NYHA) Functional class and the composite outcome (all-cause mortality and HF hospitalization). Biomarkers significantly correlated with outcome were analyzed by multivariable Cox regression and correlations with echocardiographic measurements performed. The orthogonal partial least square outcome-predicting biomarker pattern was run against the Ingenuity Pathway Analysis (IPA) database, containing annotated data from the public domain. The orthogonal partial least square analyses identified 32 biomarkers correlated with NYHA class and 28 predicting outcomes. Among outcome-predicting biomarkers, growth/differentiation factor-15 was the strongest and an additional 7 were also significant in Cox regression analyses when adjusted for age, sex, and N-terminal probrain natriuretic peptide: adrenomedullin (hazard ratio per log increase 2.53), agouti-related protein; (1.48), chitinase-3–like protein 1 (1.35), C–C motif chemokine 20 (1.35), fatty acid–binding protein (1.33), tumor necrosis factor receptor 1 (2.29), and TNF-related apoptosis-inducing ligand (0.34). Twenty-three of them correlated with diastolic dysfunction (E/e′) and 5 with left atrial volume index. The IPA suggested that increased inflammation, immune activation with decreased necrosis and apoptosis preceded poor outcome. Conclusions— In HF with preserved ejection fraction, novel biomarkers of inflammation predict HF severity and prognosis that may complement or even outperform traditional markers, such as N-terminal probrain natriuretic peptide. These findings lend support to a hypothesis implicating global systemic inflammation in HF with preserved ejection fraction. Clinical Trial Registration— URL: http://www.clinicaltrials.gov; Unique identifier: NCT00774709.


Journal of Controlled Release | 2015

Development of target-specific liposomes for delivering small molecule drugs after reperfused myocardial infarction.

Siva Sai Krishna Dasa; Ryo Suzuki; Michael F. Gutknecht; Lindsey T. Brinton; Yikui Tian; Erik Michaëlsson; Lennart Lindfors; Alexander L. Klibanov; Brent A. French; Kimberly A. Kelly

Although reperfusion is essential in restoring circulation to ischemic myocardium, it also leads to irreversible events including reperfusion injury, decreased cardiac function and ultimately scar formation. Various cell types are involved in the multi-phase repair process including inflammatory cells, vascular cells and cardiac fibroblasts. Therapies targeting these cell types in the infarct border zone can improve cardiac function but are limited by systemic side effects. The aim of this work was to develop liposomes with surface modifications to include peptides with affinity for cell types present in the post-infarct myocardium. To identify peptides specific for the infarct/border zone, we used in vivo phage display methods and an optical imaging approach: fluorescence molecular tomography (FMT). We identified peptides specific for cardiomyocytes, endothelial cells, myofibroblasts, and c-Kit + cells present in the border zone of the remodeling infarct. These peptides were then conjugated to liposomes and in vivo specificity and pharmacokinetics were determined. As a proof of concept, cardiomyocyte specific (I-1) liposomes were used to deliver a PARP-1 (poly [ADP-ribose] polymerase 1) inhibitor: AZ7379. Using a targeted liposomal approach, we were able to increase AZ7379 availability in the infarct/border zone at 24h post-injection as compared with free AZ7379. We observed ~3-fold higher efficiency of PARP-1 inhibition when all cell types were assessed using I-1 liposomes as compared with negative control peptide liposomes (NCP). When analyzed further, I-1 liposomes had 9-fold and 1.5-fold higher efficiencies in cardiomyocytes and macrophages, respectively, as compared with NCP liposomes. In conclusion, we have developed a modular drug delivery system that can be targeted to cell types of therapeutic interest in the infarct border zone.


PLOS ONE | 2012

Modelling of mouse experimental colitis by global property screens: a holistic approach to assess drug effects in inflammatory bowel disease.

Johan Gottfries; Silvia Melgar; Erik Michaëlsson

Preclinical disease models play an important role in the establishment of new treatment paradigms, identification of biomarkers and assessment of drug efficacy and safety. However, the accuracy of these models in context of the human disease are sometimes questioned, e.g. due to trials failing to confirm efficacy in humans. We suggest that one reason behind this gap in predictability may relate to how the preclinical data is analyzed and interpreted. In the present paper, we introduce a holistic approach to analyze and illustrate data in context of one of the most commonly used colitis models, i.e. the mouse dextran sulphate sodium (DSS) colitis model. Diseased mice were followed over time along disease progression and by use of tool pharmacological compounds activating nuclear hormone receptors, respectively. A new multivariate statistics approach was applied including principal component analysis (PCA) with treatment prediction subsequent to establishing the principal component analysis model. Thus, several studies could be overlaid and compared to each other in a new, comprehensive and holistic way. This method, named mouse colitis global property screening, appears applicable not only to any animal modelling series of studies but also to human clinical studies. The prerequisites for the study set up and calculations are delineated and examples of new learnings from the global property screening will be presented.


Atherosclerosis | 2016

Suppression of abdominal aortic aneurysm formation by AR-R17779, an agonist for the α7 nicotinic acetylcholine receptor

Aya Watanabe; Toshihiro Ichiki; Hiroshi Kojima; Yusuke Takahara; Eva Hurt-Camejo; Erik Michaëlsson; Chikahiro Sankoda; Jiro Ikeda; Eriko Inoue; Tomotake Tokunou; Shiro Kitamoto; Kenji Sunagawa

OBJECTIVE Activation of vagal nerve suppresses inflammatory responses through activation of α7 nicotinic acetylcholine receptor (nAchR). We sought to determine whether AR-R17779, a selective agonist of α7nAchR, affects the development of abdominal aortic aneurysm (AAA). METHODS AND RESULTS AAA was induced by topical application of calcium chloride (CaCl2) to abdominal aorta (AAA group). NaCl (0.9%) was substituted for CaCl2 as a sham operation (SHAM group). AR-R17779 was administered in drinking water (AAA/AR-R group). One and 6 weeks after the operation, aortic tissue was excised for histological and molecular analyses. Aortic diameter and macrophage infiltration into the aortic adventitia were increased in AAA group compared with SHAM group at 6 weeks. Treatment with AR-R17779 reduced the diameter of the aorta and macrophage infiltration compared with AAA group. Wavy morphology of the elastic lamellae was lost in AAA group while it was preserved in AAA/AR-R group. Expression of inflammatory cytokines and matrix metalloproteinase (MMP) activities were enhanced in AAA group, which was suppressed in AAA/AR-R group. AR-R17779 treatment suppressed CaCl2-induced expression of cytokines, activities of MMPs and NF-κB activation at 1 week when aortic dilatation had not developed. CONCLUSION Treatment with AR-R17779 prevented the enlargement of abdominal aorta induced by CaCl2 in association with reduced inflammation and extracellular matrix disruption. These findings suggest therapeutic potential of α7nAchR activation for prevention of AAA development.


European Heart Journal | 2018

Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque

Imran Rashid; Ghassan J. Maghzal; Yung-Chih Chen; David Cheng; Jihan Talib; Darren Newington; Minqin Ren; Saumitra Vajandar; Amy Kate Searle; Ana Maluenda; Eva-Lotte Lindstedt; Andrew Jabbour; Antony J Kettle; Andre Bongers; Carl A. Power; Erik Michaëlsson; Karlheinz Peter; Roland Stocker

Aims As the inflammatory enzyme myeloperoxidase (MPO) is abundant in ruptured human atherosclerotic plaques, we aimed to investigate the role of MPO as a potential diagnostic and therapeutic target for high-risk plaque. Methods and results We employed the tandem stenosis model of atherosclerotic plaque instability in apolipoprotein E gene knockout (Apoe-/-) mice. To test the role of MPO, we used Mpo-/-Apoe-/- mice and the 2-thioxanthine MPO inhibitor AZM198. In vivo MPO activity was assessed by liquid chromatography-tandem mass spectrometry detection of 2-chloroethidium generation from hydroethidine and by bis-5HT-DTPA-Gd (MPO-Gd) molecular magnetic resonance imaging (MRI), while plaque phenotype was verified histologically. Myeloperoxidase activity was two-fold greater in plaque with unstable compared with stable phenotype. Genetic deletion of MPO significantly increased fibrous cap thickness, and decreased plaque fibrin and haemosiderin content in plaque with unstable phenotype. AZM198 inhibited MPO activity and it also increased fibrous cap thickness and decreased fibrin and haemosiderin in plaque with unstable phenotype, without affecting lesion monocytes and red blood cell markers or circulating leukocytes and lipids. MPO-Gd MRI demonstrated sustained enhancement of plaque with unstable phenotype on T1-weighted imaging that was two-fold greater than stable plaque and was significantly attenuated by both AZM198 treatment and deletion of the Mpo gene. Conclusion Our data implicate MPO in atherosclerotic plaque instability and suggest that non-invasive imaging and pharmacological inhibition of plaque MPO activity hold promise for clinical translation in the management of high-risk coronary artery disease.

Collaboration


Dive into the Erik Michaëlsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge