Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Portelius is active.

Publication


Featured researches published by Erik Portelius.


Lancet Neurology | 2016

CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis

Bob Olsson; Ronald Lautner; Ulf Andreasson; Annika Öhrfelt; Erik Portelius; Maria Bjerke; Mikko Hölttä; Christoff er Rosén; Caroline Olsson; Gabrielle Strobel; Elizabeth Wu; Kelly Dakin; Max Petzold; Kaj Blennow; Henrik Zetterberg

BACKGROUND Alzheimers disease biomarkers are important for early diagnosis in routine clinical practice and research. Three core CSF biomarkers for the diagnosis of Alzheimers disease (Aβ42, T-tau, and P-tau) have been assessed in numerous studies, and several other Alzheimers disease markers are emerging in the literature. However, there have been no comprehensive meta-analyses of their diagnostic performance. We systematically reviewed the literature for 15 biomarkers in both CSF and blood to assess which of these were most altered in Alzheimers disease. METHODS In this systematic review and meta-analysis, we screened PubMed and Web of Science for articles published between July 1, 1984, and June 30, 2014, about CSF and blood biomarkers reflecting neurodegeneration (T-tau, NFL, NSE, VLP-1, and HFABP), APP metabolism (Aβ42, Aβ40, Aβ38, sAPPα, and sAPPβ), tangle pathology (P-tau), blood-brain-barrier function (albumin ratio), and glial activation (YKL-40, MCP-1, and GFAP). Data were taken from cross-sectional cohort studies as well as from baseline measurements in longitudinal studies with clinical follow-up. Articles were excluded if they did not contain a cohort with Alzheimers disease and a control cohort, or a cohort with mild cognitive impairment due to Alzheimers disease and a stable mild cognitive impairment cohort. Data were extracted by ten authors and checked by two for accuracy. For quality assessment, modified QUADAS criteria were used. Biomarker performance was rated by random-effects meta-analysis based on the ratio between biomarker concentration in patients with Alzheimers disease and controls (fold change) or the ratio between biomarker concentration in those with mild cognitive impariment due to Alzheimers disease and those with stable mild cognitive impairment who had a follow-up time of at least 2 years and no further cognitive decline. FINDINGS Of 4521 records identified from PubMed and 624 from Web of Science, 231 articles comprising 15 699 patients with Alzheimers disease and 13 018 controls were included in this analysis. The core biomarkers differentiated Alzheimers disease from controls with good performance: CSF T-tau (average ratio 2·54, 95% CI 2·44-2·64, p<0·0001), P-tau (1·88, 1·79-1·97, p<0·0001), and Aβ42 (0·56, 0·55-0·58, p<0·0001). Differentiation between cohorts with mild cognitive impairment due to Alzheimers disease and those with stable mild cognitive impairment was also strong (average ratio 0·67 for CSF Aβ42, 1·72 for P-tau, and 1·76 for T-tau). Furthermore, CSF NFL (2·35, 1·90-2·91, p<0·0001) and plasma T-tau (1·95, 1·12-3·38, p=0·02) had large effect sizes when differentiating between controls and patients with Alzheimers disease, whereas those of CSF NSE, VLP-1, HFABP, and YKL-40 were moderate (average ratios 1·28-1·47). Other assessed biomarkers had only marginal effect sizes or did not differentiate between control and patient samples. INTERPRETATION The core CSF biomarkers of neurodegeneration (T-tau, P-tau, and Aβ42), CSF NFL, and plasma T-tau were strongly associated with Alzheimers disease and the core biomarkers were strongly associated with mild cognitive impairment due to Alzheimers disease. Emerging CSF biomarkers NSE, VLP-1, HFABP, and YKL-40 were moderately associated with Alzheimers disease, whereas plasma Aβ42 and Aβ40 were not. Due to their consistency, T-tau, P-tau, Aβ42, and NFL in CSF should be used in clinical practice and clinical research. FUNDING Swedish Research Council, Swedish State Support for Clinical Research, Alzheimers Association, Knut and Alice Wallenberg Foundation, Torsten Söderberg Foundation, Alzheimer Foundation (Sweden), European Research Council, and Biomedical Research Forum.


International Journal of Alzheimer's Disease | 2010

Confounding Factors Influencing Amyloid Beta Concentration in Cerebrospinal Fluid

Maria Bjerke; Erik Portelius; Lennart Minthon; Anders Wallin; Henrik Anckarsäter; Rolf Anckarsäter; Niels Andreasen; Henrik Zetterberg; Ulf Andreasson; Kaj Blennow

Background. Patients afflicted with Alzheimers disease (AD) exhibit a decrease in the cerebrospinal fluid (CSF) concentration of the 42 amino acid form of β-amyloid (Aβ 42). However, a high discrepancy between different centers in measured Aβ 42 levels reduces the utility of this biomarker as a diagnostic tool and in monitoring the effect of disease modifying drugs. Preanalytical and analytical confounding factors were examined with respect to their effect on the measured Aβ 42 level. Methods. Aliquots of CSF samples were either treated differently prior to Aβ 42 measurement or analyzed using different commercially available xMAP or ELISA assays. Results. Confounding factors affecting CSF Aβ 42 levels were storage in different types of test tubes, dilution with detergent-containing buffer, plasma contamination, heat treatment, and the origin of the immunoassays used for quantification. Conclusion. In order to conduct multicenter studies, a standardized protocol to minimize preanalytical and analytical confounding factors is warranted.


Acta Neuropathologica | 2010

Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease

Erik Portelius; Nenad Bogdanovic; Mikael K. Gustavsson; Inga Volkmann; Gunnar Brinkmalm; Henrik Zetterberg; Bengt Winblad; Kaj Blennow

A proposed key event in the pathogenesis of Alzheimer’s disease (AD) is the formation of neurotoxic amyloid β (Aβ) oligomers and amyloid plaques in specific brain regions that are affected by the disease. The main plaque component is the 42 amino acid isoform of Αβ (Aβ1-42), which is thought to initiate plaque formation and AD pathogenesis. Numerous isoforms of Aβ, e.g., Aβ1-42, Aβ1-40 and the 3-pyroglutamate derivate of Aβ3-42 (pGluAβ3-42), have been detected in the brains of sporadic AD (SAD) and familial AD (FAD) subjects. However, the relative importance of these isoforms in the pathogenesis of AD is not fully understood. Here, we report a detailed study using immunoprecipitation in combination with mass spectrometric analysis to determine the Aβ isoform pattern in the cerebellum, cortex and hippocampus in AD, including subjects with a mutation in the presenilin (M146V) or amyloid precursor protein (KM670/671NL) genes, SAD subjects and non-demented controls. We show that the dominating Aβ isoforms in the three different brain regions analyzed from control, SAD, and FAD are Aβ1-42, pGluAβ3-42, Aβ4-42 and Aβ1-40 of which Aβ1-42 and Aβ4-42 are the dominant isoforms in the hippocampus and the cortex in all groups analyzed, controls included. No prominent differences in Aβ isoform patterns between FAD and SAD patients were seen, underscoring the similarity in the amyloid pathology of these two disease entities.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid β-peptides in human cerebrospinal fluid

Adnan Halim; Gunnar Brinkmalm; Ulla Rüetschi; Ann Westman-Brinkmalm; Erik Portelius; Henrik Zetterberg; Kaj Blennow; Göran Larson; Jonas Nilsson

The proteolytic processing of human amyloid precursor protein (APP) into shorter aggregating amyloid β (Aβ)-peptides, e.g., Aβ1-42, is considered a critical step in the pathogenesis of Alzheimer’s disease (AD). Although APP is a well-known membrane glycoprotein carrying both N- and O-glycans, nothing is known about the occurrence of released APP/Aβ glycopeptides in cerebrospinal fluid (CSF). We used the 6E10 antibody and immunopurified Aβ peptides and glycopeptides from CSF samples and then liquid chromatography—tandem mass spectrometry for structural analysis using collision-induced dissociation and electron capture dissociation. In addition to 33 unglycosylated APP/Aβ peptides, we identified 37 APP/Aβ glycopeptides with sialylated core 1 like O-glycans attached to Thr(−39, −21, −20, and −13), in a series of APP/AβX-15 glycopeptides, where X was −63, −57, −52, and −45, in relation to Asp1 of the Aβ sequence. Unexpectedly, we also identified a series of 27 glycopeptides, the Aβ1-X series, where X was 20 (DAEFRHDSGYEVHHQKLVFF), 19, 18, 17, 16, and 15, which were all uniquely glycosylated on Tyr10. The Tyr10 linked O-glycans were (Neu5Ac)1-2Hex(Neu5Ac)HexNAc-O- structures with the disialylated terminals occasionally O-acetylated or lactonized, indicating a terminal Neu5Acα2,8Neu5Ac linkage. We could not detect any glycosylation of the Aβ1-38/40/42 isoforms. We observed an increase of up to 2.5 times of Tyr10 glycosylated Aβ peptides in CSF in six AD patients compared to seven non-AD patients. APP/Aβ sialylated O-glycans, including that of a Tyr residue, the first in a mammalian protein, may modulate APP processing, inhibiting the amyloidogenic pathway associated with AD.


Neurobiology of Aging | 2011

A novel pathway for amyloid precursor protein processing

Erik Portelius; Eric A. Price; Gunnar Brinkmalm; Mark Stiteler; Maria Olsson; Rita Persson; Ann Westman-Brinkmalm; Henrik Zetterberg; Adam J. Simon; Kaj Blennow

Amyloid precursor protein (APP) can be proteolytically processed along two pathways, the amyloidogenic that leads to the formation of the 40-42 amino acid long Alzheimer-associated amyloid β (Aβ) peptide and the non-amyloidogenic in which APP is cut in the middle of the Aβ domain thus precluding Aβ formation. Using immunoprecipitation and mass spectrometry we have shown that Aβ is present in cerebrospinal fluid (CSF) as several shorter isoforms in addition to Aβ1-40 and Aβ1-42. To address the question by which processing pathways these shorter isoforms arise, we have developed a cell model that accurately reflects the Aβ isoform pattern in CSF. Using this model, we determined changes in the Aβ isoform pattern induced by α-, β-, and γ-secretase inhibitor treatment. All isoforms longer than and including Aβ1-17 were γ-secretase dependent whereas shorter isoforms were γ-secretase independent. These shorter isoforms, including Aβ1-14 and Aβ1-15, were reduced by treatment with α- and β-secretase inhibitors, which suggests the existence of a third and previously unknown APP processing pathway involving concerted cleavages of APP by α- and β-secretase.


Neuroscience Letters | 2006

An Alzheimer's disease-specific β-amyloid fragment signature in cerebrospinal fluid

Erik Portelius; Henrik Zetterberg; Ulf Andreasson; Gunnar Brinkmalm; Niels Andreasen; Anders Wallin; Ann Westman-Brinkmalm; Kaj Blennow

Pathogenic events in Alzheimers disease (AD) involve an imbalance between the production and clearance of the neurotoxic beta-amyloid peptide (Abeta), especially the 42 amino acid peptide Abeta1-42. While much is known about the production of Abeta1-42, many questions remain about how the peptide is degraded. To investigate the degradation pattern, we developed a method based on immunoprecipitation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry that determines the Abeta degradation fragment pattern in cerebrospinal fluid (CSF). We found in total 18 C-terminally and 2 N-terminally truncated Abeta peptides and preliminary data indicated that there were differences in the detected Abeta relative abundance pattern between AD and healthy controls. Here, we provide direct evidence that an Abeta fragment signature consisting of Abeta1-16, Abeta1-33, Abeta1-39, and Abeta1-42 in CSF distinguishes sporadic AD patients from non-demented controls with an overall accuracy of 86%.


Acta Neurologica Scandinavica | 2008

Clinical proteomics in neurodegenerative disorders.

Henrik Zetterberg; Ulla Rüetschi; Erik Portelius; Gunnar Brinkmalm; Ulf Andreasson; Kaj Blennow; Ann Brinkmalm

Neurodegenerative disorders are characterized by neuronal impairment that eventually leads to neuronal death. In spite of the brain’s known capacity for regeneration, lost neurons are difficult to replace. Therefore, drugs aimed at inhibiting neurodegenerative processes are likely to be most effective if the treatment is initiated as early as possible. However, clinical manifestations in early disease stages are often numerous, subtle and difficult to diagnose. This is where biomarkers that specifically reflect onset of pathology, directly or indirectly, may have a profound impact on diagnosis making in the future. A triplet of biomarkers for Alzheimer’s disease (AD), total and hyperphosphorylated tau and the 42 amino acid isoform of β‐amyloid, has already been established for early detection of AD before the onset of dementia. However, more biomarkers are needed both for AD and for other neurodegenerative disorders, such as Parkinson’s disease, frontotemporal dementia and amyotrophic lateral sclerosis. This review provides an update on recent advances in clinical neuroproteomics, a biomarker discovery field that has expanded immensely during the last decade, and gives an overview of the most commonly used techniques and the major clinically relevant findings these techniques have lead to.


Journal of Internal Medicine | 2014

Pathways to Alzheimer's disease

John Hardy; Nenad Bogdanovic; Bengt Winblad; Erik Portelius; Nancy C. Andreasen; Angel Cedazo-Minguez; Henrik Zetterberg

Recent trials of anti‐amyloid agents have not produced convincing improvements in clinical outcome in Alzheimers disease; however, the reason for these poor or inconclusive results remains unclear. Recent genetic data continue to support the amyloid hypothesis of Alzheimers disease with protective variants being found in the amyloid gene and both common low‐risk and rare high‐risk variants for disease being discovered in genes that are part of the amyloid response pathways. These data support the view that genetic variability in how the brain responds to amyloid deposition is a potential therapeutic target for the disease, and are consistent with the notion that anti‐amyloid therapies should be initiated early in the disease process.


JAMA Neurology | 2016

Association of Cerebrospinal Fluid Neurofilament Light Concentration With Alzheimer Disease Progression

Henrik Zetterberg; Tobias Skillbäck; Niklas Mattsson; John Q. Trojanowski; Erik Portelius; Leslie M. Shaw; Michael W. Weiner; Kaj Blennow

IMPORTANCE The extent to which large-caliber axonal degeneration contributes to Alzheimer disease (AD) progression is unknown. Cerebrospinal fluid (CSF) neurofilament light (NFL) concentration is a general marker of damage to large-caliber myelinated axons. OBJECTIVE To test whether CSF NFL concentration is associated with cognitive decline and imaging evidence of neurodegeneration and white matter change in AD. DESIGN, SETTING, AND PARTICIPANTS A commercially available immunoassay was used to analyze CSF NFL concentration in a cohort of patients with AD (n = 95) or mild cognitive impairment (MCI) (n = 192) and in cognitively normal individuals (n = 110) from the Alzheimers Disease Neuroimaging Initiative. The study dates were January 2005 to December 2007. The NFL analysis was performed in November 2014. MAIN OUTCOMES AND MEASURES Correlation was investigated among baseline CSF NFL concentration and longitudinal cognitive impairment, white matter change, and regional brain atrophy within each diagnostic group. RESULTS Cerebrospinal fluid NFL concentration (median [interquartile range]) was higher in the AD dementia group (1479 [1134-1842] pg/mL), stable MCI group (no progression to AD during follow-up; 1182 [923-1687] pg/mL), and progressive MCI group (MCI with progression to AD dementia during follow-up; 1336 [1061-1693] pg/mL) compared with control participants (1047 [809-1265] pg/mL) (P < .001 for all) and in the AD dementia group compared with the stable MCI group (P = .01). In the MCI group, a higher CSF NFL concentration was associated with faster brain atrophy over time as measured by changes in whole-brain volume (β = -4177, P = .003), ventricular volume (β = 1835, P < .001), and hippocampus volume (β = -54.22, P < .001); faster disease progression as reflected by decreased Mini-Mental State Examination scores (β = -1.077, P < .001) and increased Alzheimer Disease Assessment Scale cognitive subscale scores (β = 2.30, P < .001); and faster white matter intensity change (β = 598.7, P < .001). CONCLUSIONS AND RELEVANCE Cerebrospinal fluid NFL concentration is increased by the early clinical stage of AD and is associated with cognitive deterioration and structural brain changes over time. This finding corroborates the contention that degeneration of large-caliber axons is an important feature of AD neurodegeneration.


Alzheimer's Research & Therapy | 2010

A novel Aβ isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease

Erik Portelius; Robert A. Dean; Mikael K. Gustavsson; Ulf Andreasson; Henrik Zetterberg; Eric Siemers; Kaj Blennow

IntroductionLY450139 (semagacestat) inhibits γ-secretase, a key enzyme for generation of amyloid β (Aβ), the peptide deposited in plaques in Alzheimer disease (AD). Previous data have shown that LY450139 lowers plasma Aβ, but has no clear effect on Aβ1-40 or Aβ1-42 levels in cerebrospinal fluid (CSF). By using targeted proteomics techniques, we recently identified several shorter Aβ isoforms, such as Aβ1-16, that in experimental settings increase during γ-secretase inhibitor treatment, and thus may serve as sensitive biochemical indices of the treatment effect. Here, we test the hypothesis that these shorter Aβ isoforms may be biomarkers of γ-secretase inhibitor treatment in clinical trials.MethodsIn a phase II clinical trial, 35 individuals with mild to moderate AD were randomized to placebo (n = 10) or LY450139 (100 mg (n = 15) or 140 mg (n = 10)) and underwent lumbar puncture at baseline and after 14 weeks of treatment. The CSF Aβ isoform pattern was analyzed with immunoprecipitation combined with MALDI-TOF mass spectrometry.ResultsThe CSF levels of Aβ1-14, Aβ1-15, and Aβ1-16 showed a dose-dependent increase by 57% and 74%, 21% and 35%, and 30% and 67%, respectively in the 100-mg and 140-mg treatment groups. Aβ1-40 and Aβ1-42 were unaffected by treatment.ConclusionsCSF Aβ1-14, Aβ1-15, and Aβ1-16 increase during γ-secretase inhibitor treatment in AD, even at doses that do not affect Aβ1-42 or Aβ1-40, probably because of increased substrate availability of the C99 APP stub (APP β-CTF) induced by γ-secretase inhibition. These Aβ isoforms may be novel sensitive biomarkers to monitor the biochemical effect in clinical trials.Trial registrationClinical Trials.gov NCT00244322

Collaboration


Dive into the Erik Portelius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaj Blennow

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Ulf Andreasson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Pannee

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Johan Gobom

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge